torch_geometric,scatter,sparse, cluster的安装失败

博客介绍了在已安装3.9版本Python、11.6版本CUDA和1.31.1版本torch的环境下,安装torch_geometric的方法。需先安装scatter、sparse、cluster,直接安装会报错,应先找到与torch版本匹配的whl,再根据电脑支持的版本下载到本地,最后用pip本地安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,对于自己的电脑环境是

已将安装3.9版本的python,成功安装11.6版本的cuda和1.31.1版本的torch。

现在想要安装torch_geometric,

-需要先安装scatter,sparse, cluster。

直接安装失败,报错如下:大意就是无法build whl

解决方案参考如下,安装这三个包注意先去找到和自己torch版本匹配的whl,详情参考

pip install torch_scatter安装失败,最终whl解决-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_37052320/article/details/118161410具体操作方案:

1.先找自己的pytorch版本,

我的是1.31.1+cu116

先去去打开网页https://pytorch-geometric.com/whl/:找到自己的pytorch版本对应的

.进去pytorch对应的pytorch-geometric之后,先别下载!!!!!

2.看自己的电脑支持安装的version:

命令是

pip debug --verbos

然后得到如下信息,注意观察自己兼容的版本,我的是cp39-cp39

于是将对应版本scatter,sparse, cluster等等下载到本地,我的下载的是cp39的windows版,下载到了 D:\Downloads\edgedownloads这个文件夹下面

3.使用pip本地安装依次安装各个whl和 torch-geometric 成功

示例安装cluster命令如下:

pip install D:\Downloads\edgedownloads\torch_cluster-1.6.0+pt113cu116-cp39-cp39-win_amd64.whl

番外:如果下载的whl版本不对,是会安装失败的,比如我下载了cp38去安装,平台不兼容,报错如下:

 

为啥pip从网页安装会失败机制还没弄个清楚,后面再说。 

### 如何通过 pip 安装 torch_geometric `torch_geometric` 是一个用于处理图神经网络的流行库,可以通过 `pip` 进行安装。然而,在安装过程中需要注意一些依赖项以及兼容性问题。 #### 1. 安装 PyTorch 由于 `torch_geometric` 高度依赖于 PyTorch,因此需要先确保已正确安装合适的 PyTorch 版本。推荐使用最新版 PyTorch (2.0+) 来获得最佳性能和支持[^1]。可以按照以下命令来安装: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 上述命令适用于 CUDA 11.8 的环境;如果不需要 GPU 支持,则可替换为 CPU-only 版本: ```bash pip install torch torchvision torchaudio ``` #### 2. 安装 torch_scatter 和其他扩展包 `torch_geometric` 使用了一些额外的功能模块(如 `torch_scatter`, `torch_sparse`, `torch_cluster`, `torch_spline_conv`),这些模块可能需要编译支持。为了避免因编译器或版本不匹配引发的问题,可以直接下载预编译好的二进制文件[^2]。以下是具体的安装方式: ```bash pip install torch-scatter torch-sparse torch-cluster torch-spline-conv -f https://data.pyg.org/whl/torch-{pytorch_version}+{cuda_version}.html ``` 其中 `{pytorch_version}` 替换为你当前使用的 PyTorch 版本号,而 `{cuda_version}` 则取决于你的 CUDA 环境配置。例如,对于 PyTorch 2.0 和 CUDA 11.8,应执行如下命令: ```bash pip install torch-scatter torch-sparse torch-cluster torch-spline-conv -f https://data.pyg.org/whl/torch-2.0+cu118.html ``` #### 3. 安装 torch_geometric 完成以上步骤后,即可轻松安装 `torch_geometric` 库本身: ```bash pip install torch-geometric ``` 此操作会自动拉取并安装所需的其余组件。 --- ### 示例代码:验证安装成功与否 为了确认安装无误,可以运行一段简单的测试脚本来加载数据集并与模型交互: ```python import torch from torch_geometric.datasets import TUDataset dataset = TUDataset(root='/tmp/ENZYMES', name='ENZYMES') print(f'Dataset contains {len(dataset)} graphs.') ``` 如果一切正常,应该能够看到类似下面的结果输出: ``` Dataset contains 600 graphs. ``` --- ### 注意事项 尽管本文未提及 DGL 或其工具函数[^3],但在某些场景下可能会涉及跨框架的操作。此时需特别留意不同框架间的差异性和互操作性限制[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远离科研,保命要紧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值