蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式优化算法。它通过模拟蚂蚁在寻找食物时释放信息素的行为,来解决组合优化问题,特别是旅行商问题(TSP)。
蚁群算法的基本思想是,蚂蚁在搜索过程中通过释放信息素来引导其他蚂蚁的行为。蚂蚁在路径上释放的信息素会被其他蚂蚁感知到,并且更倾向于选择信息素浓度较高的路径。随着时间的推移,信息素会逐渐蒸发,从而使路径上的信息素浓度趋于平衡。
下面是一个使用蚁群算法解决旅行商问题的Python代码示例:
import numpy as np
class AntColonyOptimizer:
def __init__(self, num_ants, num_iterations, alpha, beta, rho, Q):
self.num_ants = num_ants
self.num_iterations = num_iterations
self.alpha = alpha
self.beta = beta
self.rho