鲸鱼优化算法(Whale Optimization Algorithm,WOA)是一种基于仿生学的优化算法,灵感来源于鲸鱼的群体行为。该算法最初由Seyedali Mirjalili等人于2016年提出。
鲸鱼优化算法的基本思想是通过模拟鲸鱼的行为,来寻找最优解。在算法中,每条鲸鱼代表一个解,整个鲸群代表解空间。算法通过模拟鲸鱼的迁徙、呼吸和歌唱等行为,来更新每条鲸鱼的位置和速度,从而逐步逼近最优解。
具体来说,鲸鱼优化算法包括以下几个步骤:
-
初始化种群:随机生成一定数量的鲸鱼,每个鲸鱼代表一个解。
-
计算适应度:根据目标函数,计算每个鲸鱼的适应度。
-
更新最优解:记录当前最优解。
-
迁徙行为:通过模拟鲸鱼的迁徙行为,更新每条鲸鱼的位置和速度。
-
呼吸行为:通过模拟鲸鱼的呼吸行为,更新每条鲸鱼的位置和速度。
-
歌唱行为:通过模拟鲸鱼的歌唱行为,更新每条鲸鱼的位置和速度。
-
更新最优解:记录当前最优解。