🧑 博主简介:曾任某智慧城市类企业
算法总监
,目前在美国市场的物流公司从事高级算法工程师
一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907
)
💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。
【CV数据集介绍-39】皮肤癌研究利器:HAM10000 数据集详解与应用
一、引言
在皮肤癌研究领域,高质量的数据集是推动诊断技术进步的关键。HAM10000 数据集凭借其丰富的样本和多样的病变类型,成为了皮肤癌分割和分类任务的热门选择。本文将深入介绍 HAM10000 数据集的特点、样本构成以及在图像分割和分类任务中的应用。
二、数据集概述
HAM10000 数据集包含约 10015 张皮肤镜图像,涵盖多种常见色素性皮肤病变。这些图像采集自奥地利维也纳医科大学和澳大利亚昆士兰大学的皮肤癌诊所,时间跨度达 20 年。数据集中的图像经过标准化处理,存储为常见格式,方便研究人员直接使用。
三、数据样本数量与类别详解
3.1 样本数量
HAM10000 数据集包含 10015 张图像,这些图像涵盖了多种皮肤病变类型,为皮肤癌研究提供了丰富的数据资源。每个类别都有足够数量的图像,以支持机器学习模型的训练和验证。
3.2 类别及含义
- 光化性角化病和上皮内癌 / Bowen 病(AKIEC)
这类病变是鳞状细胞癌的非侵袭性变体,通常表现为皮肤表面的鳞屑状斑块。它们可能会进展为侵袭性鳞状细胞癌,但本身通常没有色素。光化性角化病常见于面部,而 Bowen 病则更多见于其他身体部位。 - 基底细胞癌(BCC)
基底细胞癌是一种常见的皮肤癌类型,通常生长缓慢,很少转移,但如果未经治疗会局部破坏组织。它有多种形态变体,如平坦型、结节型、色素型和囊肿型等。 - 良性角化病样病变(日光性雀斑 / 脂溢性角化病和扁平苔藓样角化病,BKL)
这类病变包括脂溢性角化病(也称为 “老年疣”)、日光性雀斑以及扁平苔藓样角化病。虽然它们在皮肤镜下可能呈现不同的特征,但在生物学特性和组织病理学报告中常被归为一类。 - 皮肤纤维瘤(DF)
皮肤纤维瘤是一种良性皮肤病变,可能是对轻微创伤的反应性增生或炎症反应。其典型的皮肤镜表现为周边网状线条和中央白色斑块。 - 黑色素瘤(MEL)
黑色素瘤是一种恶性黑色素细胞肿瘤,早期切除可以治愈。它有多种变体,包括原位黑色素瘤和侵袭性黑色素瘤。黑色素瘤的皮肤镜特征因解剖部位而异。 - 黑色素细胞痣(NV)
黑色素细胞痣是黑色素细胞的良性肿瘤,有多种形态变体。与黑色素瘤不同,它们通常在颜色和结构分布上是对称的。 - 血管病变(血管瘤、血管角化瘤、化脓性肉芽肿和出血,VASC)
这类病变包括樱桃血管瘤、血管角化瘤、化脓性肉芽肿和出血等。它们在皮肤镜下通常呈现红色或紫色,且边界清晰。
部分数据的展示如下:
3.3 每个类别图片数量
在 HAM10000 数据集中,各个类别的图片数量分布如下:
类别名称 | 图片数量 |
---|---|
AKIEC | 315 |
BCC | 514 |
BKL | 714 |
DF | 103 |
MEL | 1113 |
NV | 6305 |
VASC | 142 |
四、数据集应用
4.1 图像分割
在图像分割任务中,HAM10000 数据集可用于训练和评估分割模型。通过对皮肤病变区域和正常皮肤区域的像素级标注,模型可以学习如何准确识别和分割病变区域。这有助于医生更精确地确定病变的边界,为后续的诊断和治疗提供重要依据。
4.2 图像分类
对于图像分类任务,HAM10000 数据集的多类别标注使其成为理想的训练数据。研究人员可以利用这些数据训练深度学习模型,使其能够自动识别和分类不同类型的皮肤病变。这不仅可以辅助医生进行快速准确的诊断,还能提高诊断效率,尤其是在大规模筛查中。
五、总结
HAM10000 数据集凭借其丰富的样本数量、全面的类别覆盖以及高质量的图像,成为了皮肤癌研究领域的重要资源。无论是用于图像分割还是分类任务,该数据集都展现出了巨大的潜力和价值。如果您正在从事皮肤癌相关的研究或开发工作,HAM10000 数据集无疑是您不可或缺的得力助手。
以上内容仅供参考,您可以根据实际需求进行调整和补充。希望这篇博客能够帮助更多人了解 HAM10000 数据集及其在皮肤癌研究中的重要应用。