python使用scrapy框架爬取一周天气预报

本文详细介绍了如何使用Python的Scrapy框架爬取一周天气预报。内容包括scrapy的安装、项目创建、主要文件如settings.py、items.py、pipelines.py的介绍和编写,以及爬虫代码的实现过程。最后展示了运行结果并保存为txt文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这两天找了一本书讲的python实战,有实战项目,看到了scrapy框架部分的天气预报,决定把自己所学分享出来。
废话不多说,下面开始。

参考资料《Python网络爬虫实战 第2版》
资源链接:https://pan.baidu.com/s/1khiN7c87VTiaoybMOd3Bgg
提取码:chjf

建议使用pycharm
官网链接:http://www.jetbrains.com/pycharm/




scrapy框架的安装

首先是准备工作,我用的Windows系统,所以就只讲Windows系统了,很简单win+R,键入“cmd”打开控制台,安装scrapy,前提是得有python啊,这个肯定都有的吧。cmd里输入下面命令

pip install scrapy 

我已经安装过了,没安装的话应该是有好多个进度条的。
在这里插入图片描述第二种方法就是使用pycharm安装,操作如下
1.打开“文件(Flie)”中的“设置(Settings)”
在这里插入图片描述
2.点“Project Interpreter”右上角的加号,添加第三方库
在这里插入图片描述
在这里插入图片描述之后点击下面的install package等一会就安装好了。

在这里插入图片描述

项目的创建

scrapy startproject weather_demo01

在这里插入图片描述
创建的项目如下图所示:
在这里插入图片描述

项目中各个文件介绍

书上差不多把所有的文件都介绍了,其实主要用的就几个,我就着重说主要用到的几个了:

settings.py

这个文件主要是说最后是由谁处理爬取的数据的,比如我们定义一个文件a功能是处理爬取的数据,但是运行发现数据没按照自己想要的格式保存下来,就是因为最后settings这个文件里没指明让a来处理。
部分代码如下

# -*- coding: utf-8 -*-

# Scrapy settings for weather_demo01 project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'weather_demo01'

SPIDER_MODULES = ['weather_demo01.spiders']
NEWSPIDER_MODULE = 'weather_demo01.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'weather_demo01 (+http://www.yourdomain.com)'
ITEM_PIPELINES = {
   
   }
# Obey robots.txt rules
ROBOTSTXT_OBEY = True

这些值都是项目创立时自动写好的不需要改动。

然后就是ITEM_PIPELINES = {},这个变量是后面需要的,里面写的就是最后用来处理数据的文件,下面会讲

这里提一下ROBOTSTXT_OBEY这个变量的值,有true和false两个值,这个是是否遵守robots协议,robots协议是网站目录中包含一个robots.txt文件,这个文件记录着允许访问哪些目录,哪些不允许访问。下面用淘宝网的做个示范
在这里插入图片描述
这个文件一般都是隐藏着的,不允许访问的目录肯定是有东西不想让你知道,隐藏就不会知道哪些不让访问,淘宝留着不知道为啥,不过我估计也没人能对淘宝网造成啥伤害。扯远了,上面这个变量的含义主要是说爬虫爬的时候是否遵守robots.txt协议,如果是true,则不会访问disallow列出的目录,如果是false则是无视这个文件了。

items.py

items.py文件的作用是定义爬虫最终需要哪些项(例如天气、风力、温度等等),内容如下:

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


class WeatherDemo01Item(scrapy
### 使用Scrapy框架爬取山东各城市天气预报数据 为了实现这一目标,首先需要确保环境已经正确配置并安装了必要的依赖库[^1]。 #### 创建Scrapy项目 创建一个新的Scrapy项目用于存储所有的蜘蛛程序以及辅助文件。打开命令提示符输入如下指令: ```bash scrapy startproject shandong_weather ``` 这将在当前目录下生成名为`shandong_weather`的新文件夹,其中包含了项目的结构化布局。 #### 编写Spider类 进入新建立的项目根目录,在`spiders`子文件夹内新建Python脚本定义具体的抓取逻辑。下面是一个简单的例子展示如何获取指定网页上的信息: ```python import scrapy from ..items import ShandongWeatherItem # 假设已自定义item class WeatherSpider(scrapy.Spider): name = "weather_spider" allowed_domains = ["example.com"] # 替换成实际网站域名 start_urls = [ 'http://www.example.com/shandong/city_list', # 山东省城市列表页面URL ] def parse(self, response): city_links = response.css('a.city::attr(href)').getall() # 获取所有城市的链接 for link in city_links: yield response.follow(link, callback=self.parse_city) def parse_city(self, response): item = ShandongWeatherItem() item['city'] = response.xpath('//h1/text()').get().strip() # 提取城市名称 weather_data = response.css('.forecast') # 查找气预测部分 daily_forecasts = [] for day in weather_data: date = day.css('.date ::text').get().strip() temperature_high = day.css('.high-temp ::text').get().strip() temperature_low = day.css('.low-temp ::text').get().strip() daily_forecast = { 'date': date, 'temperature_high': temperature_high, 'temperature_low': temperature_low, } daily_forecasts.append(daily_forecast) item['forecasts'] = daily_forecasts yield item ``` 上述代码片段展示了如何通过CSS选择器和XPath表达式解析HTML文档中的特定元素,并将其转换成所需的数据格式保存到Items对象中以便后续处理或持久化操作。 #### 设置Item Pipeline 为了让提取出来的数据能够被妥善管理,可以在settings.py里激活pipeline功能并将收集的信息导出至JSON或其他形式的目标位置: ```python ITEM_PIPELINES = {'shandong_weather.pipelines.ShandongWeatherPipeline': 300} FEED_EXPORT_ENCODING = 'utf-8' ``` 此外还需要在pipelines.py里面编写相应的处理器函数负责最终的数据清洗与储存工作。 #### 运行爬虫 完成以上步骤之后就可以执行以下命令启动爬虫任务了: ```bash cd shandong_weather scrapy crawl weather_spider -o output.json ``` 这条语句会触发名为`weather_spider`的爬虫实例开始工作,并把结果输出为json文件存放在本地磁盘上。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值