芒果YOLOv5改进34:损失函数篇之多种类Loss:包括PolyLoss / VarifocalLoss / GFL / QualityFLoss / FocalLoss等

本文深入探讨了多种损失函数在YOLOv5模型中的应用和改进,包括Generalized Focal Loss (GFL)、Quality Focal Loss (QFL)、PolyLoss和VarifocalLoss。通过实验表明,这些改进能有效提升模型的检测性能,特别是在处理类别不平衡和复杂场景时。文章提供了具体代码实现,便于读者实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Generalized Focal Loss

请添加图片描述
一级检测器基本上将对象检测表述为密集分类和定位(即边界框回归)。分类通常通过 Focal Loss 进行优化,并且框位置通常在 Dirac delta 分布下学习。单级检测器的最新趋势是引入单个预测分支来估计定位质量,其中预测质量有助于分类以提高检测性能。本文深入研究了表示以上三个基本要素:质量估计、分类和定位。在现有实践中发现了两

### 修改 YOLOv5 中的 GFL 损失函数 要在 YOLOv5 中实现并应用 GFL(Generalized Focal Loss),需要对源码中的损失计算模块进行调整。以下是具体的方法: #### 1. **核心代码修改** YOLOv5 的默认损失函数位于 `utils/loss.py` 文件中,主要由 `ComputeLoss` 类负责处理。为了引入 GFL,需替换原有的 BCEWithLogitsLoss 或其他损失函数。 以下是一个基于 GFL 的自定义损失函数实现[^2]: ```python import torch import torch.nn as nn import torch.nn.functional as F class GeneralizedFocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2.0, reduction='mean'): super(GeneralizedFocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, inputs, targets): ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = torch.exp(-ce_loss) loss = self.alpha * ((1 - p_t)**self.gamma) * ce_loss if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: return loss ``` 此代码实现了 GFL 的基本形式,并允许通过参数调节其行为[^4]。 --- #### 2. **集成到 ComputeLoss** 在 `utils/loss.py` 中找到 `ComputeLoss` 类,将上述 GFL 替代原来的分类损失部分。例如,在 `_build_losses` 方法中更新如下: ```python def _build_losses(self, ...): ... # 原始 BCEWithLogitsLoss 替换为 GFL self.loss_cls = GeneralizedFocalLoss(alpha=0.25, gamma=2.0, reduction='mean') ... ``` 随后,在前向传播过程中调用新的损失函数即可。 --- #### 3. **配置文件调整** 如果希望动态控制 GFL 参数(如 `alpha` 和 `gamma`),可以在 YAML 配置文件中新增字段。例如: ```yaml gfl_alpha: 0.25 gfl_gamma: 2.0 ``` 接着,在初始化 `ComputeLoss` 时读取这些超参: ```python from yaml import safe_load with open('config.yaml', 'r') as f: cfg = safe_load(f) self.gfl_alpha = cfg.get('gfl_alpha', 0.25) self.gfl_gamma = cfg.get('gfl_gamma', 2.0) self.loss_cls = GeneralizedFocalLoss( alpha=self.gfl_alpha, gamma=self.gfl_gamma, reduction='mean' ) ``` 这一步使得模型更加灵活,便于实验不同设置下的性能表现。 --- #### 4. **验证与测试** 完成以上更改后,重新编译项目并运行训练脚本。可以通过 TensorBoard 或日志监控新损失函数的效果。此外,建议对比原生 FL 和 GFL 下的 mAP 变化,评估实际增益[^3]。 --- ### 注意事项 - 如果发现收敛速度变慢或精度下降,请检查 GFL 超参是否合理。 - 对于边界框回归任务,可考虑联合使用 DFL(Distribution Focal Loss)以提升定位准确性[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值