线性筛(欧拉筛)

欧拉筛是一种优化的求解质数的算法,保证每个合数仅被其最小质因数筛掉。除了基本的质数筛选,欧拉筛还能用于计算欧拉函数等计数问题,其常数项较小。算法过程包括枚举2到n,筛去质数倍数,并在发现合数的质因数时停止。正确性基于质因数的唯一性和合数的因数特性。代码实现中,利用bool数组记录质数状态,并输出质数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉筛

1:关于欧拉筛

用途:线性的求区间[1,n]的所有质数

事实上,优化以后的埃氏筛已经很优秀了,一般情况下,很难通过时间复杂度区分欧拉筛和埃氏筛。

所以我们为什么需要欧拉筛

  • 欧拉筛可以完成很多计数,比如欧拉函数
  • 欧拉筛比较高级且常数略小一些

2:原理和过程

过程:

欧拉筛的主要思想是,用已知的质数筛掉这个质数的倍数。且需要保证对于任意一个合数,它会且只会它的最小因数筛掉

所以我们只需要枚举i = 2~n(主意1不是质数)在这个过程中维护已经发现的所有质数的集合。然后筛掉这些质数的i倍。一旦发现某个质数pjp_jpj是i的因数,则不去筛所有比 pjp_jpj大的质数的i倍 即:if(!(i%prime[j]))break;

正确性证明:

∀pj如果i%pj=0\forall p_j 如果 i \% p_j = 0pji%pj=0 , 那么:

1.pjp_jpj一定是i的最小质因数。因为pjp_jpj是质数且,如果 i 还有比pip_ipi更小的因子,由于p数组是有序的,所以会在更靠前的位置被枚举到。为了满足"于任意一个合数,它会且只会它的最小因数筛掉",所以小于等于pip_ipi的质数都可以被使用。

2. i 一定是 pjp_jpj 的因数。对于所有大于 pjp_jpj 的质数,很显然 pjp_jpj 不是 pj×ip_j\times ipj×i 的最小的因子,因为 i 里面一定有比 pip_ipi 更小的因子。为了满足"于任意一个合数,它会且只会它的最小因数筛掉",所以不使用所有大于等于pjp_jpj的质数。

3.代码

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN = 1e8+7;
bool isprime[MAXN];
int prime[MAXN];
template <typename _TP>
inline _TP read(_TP &X){
    char ch=0;int w;X=0;
    while(!isdigit(ch)){w=ch=='-';ch=getchar();}
    while(isdigit(ch)){X=(X<<1)+(X<<3)+(ch^48);ch=getchar();}
    X=w?-X:X;
    return X;
}
int main(){
    int n,x,t;
    read(n);read(t);
    memset(isprime,1,sizeof(isprime));
    isprime[1]=0;
    int cnt=0;
    for(int i=2;i<=n;i++){
        if(isprime[i])prime[++cnt]=i;
        for(int j=1;j<=cnt && i*prime[j]<=n;j++){
            isprime[i*prime[j]]=false;
            if(!(i%prime[j]))break;
        }
    }
    for(int i=1;i<=t;i++){
        read(x);
        cout<<prime[x]<<'\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值