欧拉筛
1:关于欧拉筛
用途:线性的求区间[1,n]的所有质数
事实上,优化以后的埃氏筛已经很优秀了,一般情况下,很难通过时间复杂度区分欧拉筛和埃氏筛。
所以我们为什么需要欧拉筛
- 欧拉筛可以完成很多计数,比如欧拉函数
- 欧拉筛比较高级且常数略小一些
2:原理和过程
过程:
欧拉筛的主要思想是,用已知的质数筛掉这个质数的倍数。且需要保证对于任意一个合数,它会且只会它的最小因数筛掉
所以我们只需要枚举i = 2~n(主意1不是质数)在这个过程中维护已经发现的所有质数的集合。然后筛掉这些质数的i倍。一旦发现某个质数pjp_jpj是i的因数,则不去筛所有比 pjp_jpj大的质数的i倍 即:if(!(i%prime[j]))break;
正确性证明:
∀pj如果i%pj=0\forall p_j 如果 i \% p_j = 0∀pj如果i%pj=0 , 那么:
1.pjp_jpj一定是i的最小质因数。因为pjp_jpj是质数且,如果 i 还有比pip_ipi更小的因子,由于p数组是有序的,所以会在更靠前的位置被枚举到。为了满足"于任意一个合数,它会且只会它的最小因数筛掉",所以小于等于pip_ipi的质数都可以被使用。
2. i 一定是 pjp_jpj 的因数。对于所有大于 pjp_jpj 的质数,很显然 pjp_jpj 不是 pj×ip_j\times ipj×i 的最小的因子,因为 i 里面一定有比 pip_ipi 更小的因子。为了满足"于任意一个合数,它会且只会它的最小因数筛掉",所以不使用所有大于等于pjp_jpj的质数。
3.代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN = 1e8+7;
bool isprime[MAXN];
int prime[MAXN];
template <typename _TP>
inline _TP read(_TP &X){
char ch=0;int w;X=0;
while(!isdigit(ch)){w=ch=='-';ch=getchar();}
while(isdigit(ch)){X=(X<<1)+(X<<3)+(ch^48);ch=getchar();}
X=w?-X:X;
return X;
}
int main(){
int n,x,t;
read(n);read(t);
memset(isprime,1,sizeof(isprime));
isprime[1]=0;
int cnt=0;
for(int i=2;i<=n;i++){
if(isprime[i])prime[++cnt]=i;
for(int j=1;j<=cnt && i*prime[j]<=n;j++){
isprime[i*prime[j]]=false;
if(!(i%prime[j]))break;
}
}
for(int i=1;i<=t;i++){
read(x);
cout<<prime[x]<<'\n';
}
return 0;
}