gensim-word2vec

本文详细探讨了gensim库中的word2vec模型,包括其工作原理、实现细节以及在Python中的使用方法。通过实例,展示了如何训练词向量并进行相似性检索,帮助读者深入理解词嵌入技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# gensim 4.2.0
sentences = word2vec.LineSentence("myword.txt")
model = word2vec.Word2Vec(sentences, workers=3, sg=0, hs=1, min_count=1, window=8, vector_size=64)
model.save('test.model')
model_vec = gensim.models.Word2Vec.load('test.model')
# dic = model_vec.wv.index_to_key
# print(dic)
# print(len(dic))
# model.wv[""]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值