文章目录
前言
小白记录自学推荐系统刚接触推荐系统,有错误的地方还请各位指正,感谢理解~
一、什么是推荐系统?
推荐系统是能找出用户和物品之间联系的信息过滤系统。推荐系统主要有两个显著的特征:
- 主动性:从用户角度考虑。不需要用户提供明确的需求,能够自主通过分析用户与物品之间的关联数据进行建模,为用户提供可能感兴趣的信息。
- 个性化:能够挖掘冷门信息推荐给用户。
总之,推荐系统推荐的物品通常来说不是对用户有帮助的,就是用户自己感兴趣的。
二、推荐系统的分类
推荐系统分类方法有很多种,依据推荐算法,可以将其分为基于内容的推荐、基于协同过滤的推荐和混合推荐。
1.基于内容的推荐
这种方法利用用户已经选择的对象,从候选集中找出与用户已选对象相似的对象作为推荐结果。这种方法的策略是首先提取推荐对象的内容特征,并和用户模型中的用户兴趣匹配。
如下图,用户A喜欢具有特征A、B的商品A,而商品C也具有特征A、B,商品A与商品C相似,于是商品C被推荐给用户A。
基于内容的推荐有如下优点:1) 简单有效,推荐结果较为直观,可解释性强;2) 没有新推荐对象冷启动的问题;3) 简单的分类方法就能够支持该策略。缺点有:1)受推荐对象特征提取能力的限制,对多媒体、文本资源的特征提取不够全面;2) 很难提出新颖的推荐结果,难以发现用