图像直方图绘制

本文深入探讨了图像直方图的概念,通过实例解释了如何绘制图像直方图,包括颜色通道的分离和统计,以及使用常见库如OpenCV进行直方图可视化的方法。直方图在图像处理中扮演着重要角色,可用于分析图像亮度分布、对比度增强等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from PIL import Image, ImageStat
import numpy as np
import matplotlib.pyplot as plt
from cv2 import cv2
import numpy as np
# 直方图

img_0 = cv2.imread('C:\\Users\\Desktop\\1.jpg', 0)#直接读为灰度图像

#opencv读取方法cv2.calcHist(速度最快)
#图像,通道[0]-灰度图,掩膜-无,灰度级,像素范围
hist_cv = cv2.calcHist([img_0], [0], None, [256], [0,256])

#numpy方法读取np.histogram()
hist_np,bins = np.histogram(img_0.ravel(), 256, [0,256])

#numpy的另一种读取方法np.bincount()(速度=10倍方法2)
hist_np2 = np.bincount(img_0.ravel(), minlength=256)

img_1 = cv2.imread('C:\\Users\\Desktop\\2.jpg', 0)#直接读为灰度图像

#opencv读取方法cv2.calcHist(速度最快)
#图像,通道[0]-灰度图,掩膜-无,灰度级,像素范围
hist_cv_1 = cv2.calcHist([img_1], [0], None, [256], [0,256])

img_2 = cv2.imread('C:\\Users\\Desktop\\3.jpg', 0)#直接读为灰度图像

#opencv读取方法cv2.calcHist(速度最快)
#图像,通道[0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏打水的杯子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值