给定 nnn 个非负整数 a1,a2,...,ana1,a2,...,ana1,a2,...,an,每个数代表坐标中的一个点 (i,ai)(i, ai)(i,ai) 。在坐标内画 nnn 条垂直线,垂直线 iii 的两个端点分别为 (i,ai)(i, ai)(i,ai) 和 (i,0)(i, 0)(i,0)。找出其中的两条线,使得它们与 xxx 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 nnn 的值至少为 222。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7][1,8,6,2,5,4,8,3,7][1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 494949。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
解:使用双指针:一个指向开始,一个指向末尾;使用变量maxareamaxareamaxarea记录当前所获得最大面积,并找出指针所指向的两条线段所形成的区域,更新maxareamaxareamaxarea,并将指向短线段的指针向另一指针移动
class Solution {
public:
int maxArea(vector<int>& height) {
int i = 0, j = height.size() - 1;
int maxarea = 0;
while (i < j) {
int h = min(height[i], height[j]);
maxarea = max(maxarea, (j - i) * h);
if (height[i] < height[j])
i++;
else
j--;
}
return maxarea;
}
};