在医学数据分析中,理解变量之间的关系对于制定治疗策略、预测疾病发展及评估干预效果至关重要。边际图(Marginal Plot)
作为一种直观展示双变量分布及其关系的工具,在数据分析和科学研究中扮演着重要角色。本文将通过实例介绍边际图的概念、重要性及其在医学数据分析中的应用。
什么是边际图?
边际图,通常与联合图(Joint Plot)
一起使用,是一种可视化技术,用于展示两个变量之间的关系及其各自的分布。它可以帮助我们理解一个变量在另一个变量不同取值下的变化情况,以及每个变量的单独分布特征。
实例:体重与收缩压的关系
为了说明边际图的应用,我们将使用随机生成的体重(Weight)和收缩压(SBP)数据。假设这些数据来自一个假设的医学研究项目,目的是探索体重与收缩压之间的关联。
import seaborn as sns # 导入Seaborn库并简写为sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 创建示例数据,生成体重和收缩压数据
np.random.seed(42)
n_samples = 100
weight = np.random.normal(70, 10, n_samples) # 体重 (kg)
sbp = weight * 0.5 + np.random.normal(0, 5, n_samples) + 100 # 收缩压 (mmHg)
# 创建DataFrame,将体重和收缩压数据存储在一起
df = pd.DataFrame({'Weight': weight, 'SBP': sbp})
# 创建一个1行3列的子图布局,并设置图形
fig, axs = plt.subplots(1, 3, figsize=(12, 10)) # 创建一个2x2的网格布局
# 调用seaborn的jointplot函数,绘制体重与收缩压的散点图,并设置样式参数
sns.jointplot(x=df["Weight"], y=df["SBP"], kind='scatter', s=200, color='#A5C2E2',
edgecolor="#6B7EB9", linewidth=2, ratio=4)
plt.show()
plt.savefig('margin_plot01.pdf')
在上述代码中,我们使用Seaborn
库的jointplot
函数绘制了一个散点图,展示了体重与收缩压之间的关系。该图同时包含了两个边际分布图:顶部是收缩压(SBP)的直方图,右侧是体重(Weight)的密度图
边际图的重要性
- 直观理解变量关系:通过散点图部分,我们可以直观地看到体重与收缩压之间是否存在线性关系、非线性关系或无关关系。
- 分析变量分布:边际分布图帮助我们了解每个变量的分布特征,如正态性、偏态、峰度等。这对于数据预处理和选择合适的统计方法至关重要。
- 识别异常值:在散点图和边际分布图中,异常值(如极端体重或收缩压值)容易被识别,从而可以进行进一步的分析或处理。
- 支持假设检验:通过观察边际图和散点图,我们可以初步判断两个变量之间是否存在相关性,为后续的假设检验提供直观依据。
在医学数据分析中的应用
- 疾病风险评估:在心血管疾病研究中,体重与收缩压的关系是评估个体患病风险的重要指标。边际图可以帮助我们更好地理解这些变量之间的关系,从而制定更准确的预防和治疗策略。
- 药物疗效评估:在药物临床试验中,边际图可用于分析不同体重或血压水平下药物的疗效差异,为个性化治疗提供依据。
- 公共卫生政策制定:通过分析大规模人群数据的边际图,公共卫生专家可以识别出体重和血压等关键健康指标的分布特征,为制定有效的公共卫生政策提供数据支持。
结论
边际图作为一种强大的可视化工具,在医学数据分析中具有广泛的应用前景。通过直观展示变量之间的关系及其分布特征,边际图不仅有助于我们更好地理解数据,还能为疾病风险评估、药物疗效评估和公共卫生政策制定提供有力支持。因此,掌握边际图的应用方法对于医学工作者来说具有重要意义。
参考文献:Python数据可视化之美
希望这篇文章能够成为您在数据分析和可视化道路上的得力助手。如果您在阅读过程中遇到任何问题,或者对某些主题有更深入探讨的想法,欢迎在评论区留言或者私信,我们会及时回复您。感谢您的阅读,我们下期再见!
同时,欢迎关注公众号 “栋研医数”,我们会持续为您更新更多精彩的数据分析内容,帮助您在医学研究领域不断提升自己的技能和知识。