【22-23 春学期】AI作业8-卷积2

本文介绍了深度学习中卷积神经网络的关键概念,如步长、填充和感受野,它们影响着网络的局部感知能力。权值共享池化,包括子采样、降采样和汇聚,是减少计算量并提取特征的重要手段。文章还讨论了从低级到高级特征的层次结构,这些特征在不同层级捕获图像的不同抽象信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

名词解释:

  1. 步长、填充
  2. 感受野
  3. 局部感知、权值共享
  4. 池化(子采样、降采样、汇聚)
  5. 低级特征、中级特征、高级特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值