Learning a Single Convolutional Super-Resolution Network for Multiple Degradations论文阅读

本文介绍了SRMD网络,它在NTIRE2018比赛中表现出色,结合超分辨率、去噪和去模糊功能。通过将模糊核、下采样和噪声作为输入训练网络,实现了单一模型处理多种退化问题。网络结构简单,虽未使用shortcut,但应用了BN。训练策略包括在不同模糊核和噪声级别上采样,使用Adam优化器,并对训练错误稳定时进行参数调整。在真实图像上的应用通过搜索最佳模糊核以获得最佳恢复效果,保持了高效的速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Learning a Single Convolutional Super-Resolution Network for Multiple Degradations论文阅读

IRCNN这篇论文我感觉对后面做超分+去噪+去模糊三合一这个思路是一种启发,SRMD应该是一篇受了启发后的成果。

这篇文章的成果在NTIRE2018上参加了比赛,考虑到它本身速度很快,层数比较少,虽然成绩不是最好的,但效果我觉得也很不错了。

理论+实现

超分+去噪+去模糊三合一,退化模型就有了三种参数:

y=(x⊗k)↓s+ny=(x \otimes k) \downarrow_{s}+ny=(xk)s+n

其中k描述的是模糊核,↓s\downarrow_{s}s描述的是下采样,n描述的是噪声,相比于IRCNN的分析+设计网络,SRMD就比较粗暴了,直接显式地将k,s,n都作为数据加入网络进行训练(不过事实上只是针对k进行了训练)训练)。

当然了,直接往里硬塞是不行的,模糊核一般都很小(论文里用的15x15和7x7),图片就大多了,所以论文里做了一个挺有意思的trick。

它首先把模糊核拉直(一维化),然后做一个PCA(只留下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值