目录
可编程网络技术解决分布式深度学习通信瓶颈
在分布式深度学习中,通信瓶颈是一个关键问题,它限制了模型训练的扩展性和效率。可编程网络技术的应用为解决这一问题提供了新的思路。
1. 网络内聚合原语加速分布式深度学习
通过在网络设备内部实现聚合原语,可以显著加速分布式深度学习的工作负载。这些聚合原语能够在网络层面直接处理数据,减少了数据在主机与网络设备之间的传输次数,从而降低了通信延迟和带宽占用。利用现代可编程网络设备,如可编程交换机和路由器,可以实现高效的网络内聚合,进一步提升分布式训练的性能。