可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望

1192 篇文章 ¥199.90 ¥299.90
835 篇文章 ¥199.90 ¥299.90

目录

可编程网络技术解决分布式深度学习通信瓶颈

1. 网络内聚合原语加速分布式深度学习

2. 流聚合与网络内数据处理设计

3. 可编程数据平面加速

4. 降低通信发生的频次

5. 使用大批量进行训练

可编程网络

可编程性定义

在大语言模型中的应用

举例说明:

可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望


可编程网络技术解决分布式深度学习通信瓶颈

在分布式深度学习中,通信瓶颈是一个关键问题,它限制了模型训练的扩展性和效率。可编程网络技术的应用为解决这一问题提供了新的思路。

1. 网络内聚合原语加速分布式深度学习

通过在网络设备内部实现聚合原语,可以显著加速分布式深度学习的工作负载。这些聚合原语能够在网络层面直接处理数据,减少了数据在主机与网络设备之间的传输次数,从而降低了通信延迟和带宽占用。利用现代可编程网络设备,如可编程交换机和路由器,可以实现高效的网络内聚合,进一步提升分布式训练的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值