目录
ZeRO:显存优化技术
ZeRO(Zero Redundancy Optimizer)是一种显存优化技术,其核心原理在于通过将模型的不同部分(包括模型参数、梯度和优化器状态)划分到多个GPU上,以减少每个GPU上的内存占用,从而支持更大规模的深度学习模型训练。以下是关于ZeRO技术原理、应用场景和优势以及实际应用案例的详细解释:
技术原理
ZeRO技术的实现分为三个阶段,每个阶段在显存占用和通信开销之间找到不同的平衡:
- ZeRO Stage 1:
- 在此阶段,仅对优化器状态进行分片存储。
- 每个GPU保留完整的梯度和模型参数。
- 易于实现,且通信量相对较小。
- 适用于中等规模的模型训练,但显存节省有限。
- ZeRO Stage 2:
- 在第一阶段的基础上,进一步对梯度进行分片。
- 每个GPU只存储自己负责的部分梯度和优化器状态,而模型参数仍然完整存储在每个GPU上。
- 较大幅度降低显存需求,同时通信开销适中。
- 是大多数大规模模型训练的理