追踪大型语言模型的思维过程:提示词工程重要

1818 篇文章 ¥199.90 ¥299.90
1217 篇文章 ¥199.90 ¥299.90
835 篇文章 ¥199.90 ¥299.90

追踪大型语言模型的思维过程:提示词工程重要

1. 分步思考能力:像人类一样打草稿

现象:Claude计算1234+5678时,先估算1200+5700≈6900,再精确计算4+8=12,最终得出6912。 在这里插入图片描述

原理

  • 自监督学习:模型通过大量数学题解析数据,自学了分步拆解问题的策略。
  • 与论文关联:类似“Tracing Thoughts”技术中的步骤分解提示,但Claude的能力是自发形成的,无需显式提示。
    意义:说明LLM具备模仿人类认知策略的潜力,可能通过训练数据中的解题逻辑潜移默化习得。

2. 跨语言概念词典:突破语言符号的束缚

现象:无论中英文提问,“热/hot”的反义词均指向“冷/cold”。
原理

  • 多语言训练:模型在多语言语料库(如Common Crawl)中学习到不同语言符号对应同一抽象概念。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值