一个多层神经网络-训练篇(part2)
背景知识要求
Python基础
Pandas库基础
Matplotlib库基础
sklearn库基础
机器学习-神经网络基础知识
摘要
本文使用上文的多层神经网络模型对链家的房源数据进行训练,对比单层神经网络模型,展示多层神经网络型的优越性。
正文
单层神经网络存在局限性
前文三篇文章是关于单层神经网络的:
第一篇——一个简单的3层神经网络模型part1,https://blog.csdn.net/qq_39206674/article/details/90204383
第二篇——一个简单的3层神经网络模型part2,https://blog.csdn.net/qq_39206674/article/details/90302038
第三篇——一个简单的3层神经网络模型part3(使用Sklearn MLPClassifier)——3层神经网络完结篇
由于在数据预处理方面存在问题,并且单层神经网络模型的数据拟合能力存在上限,导致模型在训练集上的精度在0.9左右,测试集的精度在0.75左右,即模型在数据集上的表现,存在高偏差(high bias)和高方差(high variance)问题。
多层神经网络
一些基本经验
模型训练前期我总结了一些基本经验,其实这些经验在很多机器学习的书中有介绍,我只是想亲自验证一下这些经验的正确性,此处只把验证的结论罗列一下:
- 根据实际测试效果对比,本模型的梯度更新