AVL树的删除
引言
AVL树的定义及性质及其重要的插入方法,我已在AVL树的插入一文中详细阐述过了,其中重要的旋转也已进行详细描述。
本文就不再赘述了,直接使用,要是不清楚的小伙伴,还请移步AVL树的插入再回头复习一下下。
AVL树的删除
AVL树的删除步骤如下:
- 寻找删除目标(存不存在,定位出目标)
- 判断删除目标的类型,使用转换的思路,将其转化为删除叶子
- 将删除目标与AVL树链接断开,调整平衡,完成删除
寻找删除目标
寻找删除目标的思路很简单,因AVL树也属于BST,因此寻找目标的做法与BST的删除思路基本一致。
但!但!但因为删除节点可能会导致AVL树的失衡,因此不能像BST的删除那样一删了事,它还需要删后调整,而调整牵涉的节点就是从根节点开始到删除目标路径上的所有节点。
因此在搜索的过程,与BST删除略有不同的就是,AVL树在搜寻删除目标的过程中,需要存储这条路径上的所有节点,以供后续回溯调整时使用。
删除函数声明为bool Remove(Node*& t, const Ty& key)
,其中t
为AVL的树根,key
为删除目标值
Node* parent = nullptr;
Node* p = t, * q = nullptr;
stack<Node*> st;
//p是指向AVL树的根节点的一个指针
while (p) {
if (p->val == key)//当前节点就是删除目标
break;
parent = p;
st.push(parent);//存储轨迹
if (key > p->val)//删除目标在右树
p = p->right;
else//删除目标在左树
p = p->left;
}
//执行到此处,p要么为预想的删除目标,要么为nullptr(即不存在)
//下一步应该是判断删除目标的类型,进行转化
判断删除类型,进行转化
说起删除目标的类型,只有两种:
- 删除目标存在两个子树(或节点)
- 删除目标最多仅有1个子女
删除目标存在两个子女
下图即是该情况的处理手段:
利用转化思想将非叶子节点转化为删除叶子节点,难度大大降低。
删除目标最多仅有1个子节点
只有一个子节点,非常容易处理,我们只需要令删除目标的父节点链接删除目标的子节点,再删除目标即可。如下图所示:
当然在这里面存在一种较特殊的情况,即整棵树只有两个节点,且删除目标是根节点。这种情况下我们直接令子节点成为根节点即可。如下:
删除一个节点就是如此简单,归根结底最后的删除类型只有一种:删除目标最多仅有1个子节点
此部分代码大致如下:
if (p==nullptr)//删除目标不存在
return false;
//删除节点
if (p->left && p->right) {//删除目标左右皆有
parent = p;
q = p->left;
st.push(parent);
while (q->right) {
parent = q;
st.push(parent);
q = q->right;
}
p->val = q->val;
p = q;//转化为删前驱
}
//p是删除目标,q是删除目标的子女节点
if (p->left)
q = p->left;
else
q = p->right;
if (parent==nullptr)//删除目标是整棵AVL的根节点
t = q;
else {
//断开p节点,链接它的子女q
if (parent->left == p) //删除目标是左孩子
parent->left = q;
else//删除目标是右孩子
parent->right = q;
}
//下一步应该是调整平衡
但接下来的才是重中之重,那就是调整平衡,因为删除节点,必然引起路径上某些节点的平衡因子,被删目标的父节点首当其冲。
因此确定真正的删除目标后,需要根据存储的路径向上回溯调整结构,维持AVL树的性质。
调整平衡
上文可以得出本文在代码中是定义p
为删除目标,因此下文沿用。
首先,我们应明白的是:
- 若p是其父节点
parent
的左子女,删除p
,引起左树高度降低,因此parent
的平衡因子需要+1; - 若
p
是其父节点parent
的右子女,删除p
,引起右树高度降低,因此parent
的平衡因子需要-1; - 因为
parent
的父节点也会受parent
的影响,因此有可能也需要调整,所以有可能这个调整需要不断往上追溯。
调整平衡需要分3种情况:
1.parent
的平衡因子原来为0
这种情况下,无论删除parent
的左子树还是右子树上的节点,但是不会影响到以parengt为父节点的子树高度,因此这种情况下只需要改变parent
的平衡因子即可:0------>1/-1
2. parent
的平衡因子原来绝对值为1,且被删节点位于较高的子树
可以发现,该种情况下,删除支树上的节点将使得parent
的平衡因子变为0。但由于删除使得该支树高度减1,因此需要向上平衡,沿着栈中存储的路径回溯。
因此,父节点平衡因子改动后并不意味着完成了平衡,而要追溯修改更上层的祖先节点。
3. parent
的平衡因子原来绝对值为1,且被删节点位于较矮的子树
在这种情况下,删除较矮子树上的节点,parent
的平衡因子会变为2/-2,parent
失衡,光是调整平衡因子已经不能解决问题,而是需要旋转操作进行再平衡。
情况1:
parent
的平衡因子为2,q
的平衡因子为0,执行一次左单旋即可结束平衡工作;反之,parent
的平衡因子为-2,q
的平衡因子为0,执行一次右单旋即可结束平衡工作;
情况2:
parent
的平衡因子与q的平衡因子同符号,则可以使用一个单旋转进行再平衡。如下图所示,二者皆为正,进行一次左旋即可平衡目前的支树结构。但由于旋转导致parent的父节点高度减1,所以需要继续向上考察路径中的平衡状态。
情况3:
parent
的平衡因子与q的平衡因子异符号,则需要使用双旋转进行再平衡。但由于旋转导致parent的父节点高度减1,所以需要继续向上考察路径中的平衡状态。
AVL类代码
#include <iostream>
#include <vector>
#include <stack>
#include <vld.h>
using namespace std;
template<class Ty>
class AVLTree;
template<class Ty>
class AVLNode {
friend class AVLTree<Ty>;
public:
AVLNode() :val(Ty()), bf(0),left(nullptr),right(nullptr){}
AVLNode(Ty _val = Ty(),int _bf = 0, AVLNode<Ty>* l = nullptr, AVLNode<Ty>* r = nullptr) :
val(_val), bf(_bf),left(l), right(r) {}
~AVLNode() {
left = nullptr;
right = nullptr;
bf = 0;
}
private:
AVLNode<Ty>* left;
AVLNode<Ty>* right;
Ty val;
int bf;
};
template<class Ty>
class AVLTree {
typedef AVLNode<Ty> Node;
public:
AVLTree() :root(nullptr) {}
AVLTree(const vector<Ty>& v) :root(nullptr) {
for (auto& e : v)
Insert(e);
}
~AVLTree() {
while (root!=nullptr)
Remove(root->val);
}
public:
bool Insert(const Ty& data) { return Insert(root, data); }
bool Remove(const Ty& key) { return Remove(root, key); }
void InOrder() { return InOrder(root); }
protected:
bool Insert(Node*& t, const Ty& data) {
//先按BST插入节点,寻找插入位置过程中存储轨迹
Node* parent = nullptr;
Node* p = t;
stack<Node*> st;
while (p){
if (p->val == data)//重复数据不可插入
return false;
parent = p;
st.push(parent);
if (data > p->val)
p = p->right;
else
p = p->left;
}
p = new Node(data);
if (!parent) {//空树
t = p;
return true;
}
if (p->val > parent->val)//左小右大插入
parent->right = p;
else
parent->left = p;
//调整树,使BST->AVL
while (!st.empty()) {
parent = st.top();
st.pop();
if (p == parent->left)//左树升高
--parent->bf;
else
++parent->bf;
if (!parent->bf)//父节点平衡
break;
else if (parent->bf == 1 || parent->bf == -1)
p = parent;//向上回溯
else {//本节点不平衡,需要调整
if (parent->bf < 0) {
if (p->bf < 0)//右旋(/)
RotateR(parent);
else//左右双旋(<)
RotateLR(parent);
}
else {
if (p->bf > 0)//左旋(\)
RotateL(parent);
else//右左双旋(>)
RotateRL(parent);
}
break;//已平衡,跳出
}
}
//因旋转导致的原不平衡的节点被两次指向,需要调整
if (st.empty())
t = parent;
else {
Node* q = st.top();
if (parent->val < q->val)
q->left = parent;
else
q->right = parent;
}
return true;
}
bool Remove(Node*& t, const Ty& key) {
Node* parent = nullptr;
Node* p = t, * q = nullptr;
stack<Node*> st;
while (p) { //先找到节点,存储轨迹
if (p->val == key)
break;
parent = p;
st.push(parent);
if (key > p->val)
p = p->right;
else
p = p->left;
}
if (p==nullptr)//删除目标不存在
return false;
//删除节点
if (p->left && p->right) {//删除目标左右皆有
parent = p;
q = p->left;
st.push(parent);
while (q->right) {
parent = q;
st.push(parent);
q = q->right;
}
p->val = q->val;
p = q;//转化为删前驱
}
//p是删除目标,q是删除目标的子女节点
if (p->left)
q = p->left;
else
q = p->right;
bool Isleft = false;
if (parent==nullptr)//删除目标是整棵AVL的根节点
t = q;
else {
//断开p节点,链接它的子女q
if (parent->left == p) { //删除目标是左孩子
parent->left = q;
Isleft = true;
}
else//删除目标是右孩子
parent->right = q;
}
//调整平衡
bool isbanlanced = false;
while (!st.empty()) {
parent = st.top();
st.pop();
if(Isleft)
++parent->bf;
else
--parent->bf;
if (parent->bf == 1 || parent->bf == -1)//平衡
break;
if (0 == parent->bf) { //向上回溯调整
q = parent;
if(st.size())//重置isleft
Isleft = st.top()->left == q ? true : false;
}
else {//parent失衡
if (parent->bf > 0)//令q指向较高的树
q = parent->right;
else
q = parent->left;
if (q->bf == 0){//单旋转
if (parent->bf < 0){
RotateR(parent);
parent->bf = 1;
parent->right->bf = -1;
}
else{
RotateL(parent);
parent->bf = -1;
parent->left->bf = 1;
}
isbanlanced = true;
}
else {
if (parent->bf < 0) {
if (q->bf < 0) // /
RotateR(parent);
else // <
RotateLR(parent);
}
else {
if (q->bf > 0) // \
RotateL(parent);
else // >
RotateRL(parent);
}
}
//重新链接
if (st.empty())
t = parent;
else {
q = st.top();
if (parent->val < q->val)
q->left = parent;
else
q->right = parent;
}
if (isbanlanced)
break;
}
}
delete p;
return true;
}
void InOrder(Node*& root) {
if (root) {
InOrder(root->left);
cout << root->val << " ";
InOrder(root->right);
}
}
private:
void RotateL(Node*& t) {
Node* subL = t;
t = subL->right;//子节点将变父节点
subL->right = t->left;//子节点的左树成为父节点的右树
t->left = subL;//父节点左旋
subL->bf = t->bf = 0;
}
void RotateR(Node*& t) {
Node* subR = t;
t = subR->left;//子节点将变父节点
subR->left= t->right;//子节点的右树成为父节点的左树
t->right = subR;//父节点右旋
subR->bf = t->bf = 0;
}
void RotateLR(Node*& t) {
Node* subL, * subR;
subR = t;
subL = subR->left;
t = subL->right;
subL->right = t->left;
t->left = subL;
if (t->bf <= 0)
subL->bf = 0;
else
subL->bf = -1;
subR->left = t->right;
t->right = subR;
if (t->bf >= 0)
subR->bf = 0;
else
subR->bf = 1;
t->bf = 0;
}
void RotateRL(Node*& t) {
Node* subL, * subR;
subL = t;
subR = subL->right;
t = subR->left;
subR->left = t->right;
t->right = subR;
if (t->bf >= 0)
subR->bf = 0;
else
subR->bf = 1;
subL->right = t->left;
t->left = subL;
if (t->bf <= 0)
subL->bf = 0;
else
subL->bf = -1;
t->bf = 0;
}
private:
Node* root;
};
int main() {
vector<int> iv{ 16, 3, 7 , 11, 9, 26, 18, 14, 15 };
AVLTree<int> avl(iv);
avl.Remove(7);
avl.Remove(16);
avl.Remove(3);
avl.Remove(15);
avl.Remove(3);
avl.Remove(18);
avl.Remove(14);
avl.Remove(26);
avl.Remove(9);
return 0;
}