AVL树的删除

本文深入解析AVL树的删除过程,包括寻找目标节点、判断类型并转化成叶子节点,以及关键的平衡调整策略。通过实例演示和代码说明,确保在删除后维持AVL树的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

AVL树的定义及性质及其重要的插入方法,我已在AVL树的插入一文中详细阐述过了,其中重要的旋转也已进行详细描述。

本文就不再赘述了,直接使用,要是不清楚的小伙伴,还请移步AVL树的插入再回头复习一下下。

AVL树的删除

AVL树的删除步骤如下:

  1. 寻找删除目标(存不存在,定位出目标)
  2. 判断删除目标的类型,使用转换的思路,将其转化为删除叶子
  3. 将删除目标与AVL树链接断开,调整平衡,完成删除

寻找删除目标

寻找删除目标的思路很简单,因AVL树也属于BST,因此寻找目标的做法与BST的删除思路基本一致。

但!但!但因为删除节点可能会导致AVL树的失衡,因此不能像BST的删除那样一删了事,它还需要删后调整,而调整牵涉的节点就是从根节点开始到删除目标路径上的所有节点。

因此在搜索的过程,与BST删除略有不同的就是,AVL树在搜寻删除目标的过程中,需要存储这条路径上的所有节点,以供后续回溯调整时使用。

删除函数声明为bool Remove(Node*& t, const Ty& key),其中t为AVL的树根,key为删除目标值

Node* parent = nullptr;
Node* p = t, * q = nullptr;
stack<Node*> st;
//p是指向AVL树的根节点的一个指针
while (p) {		
	if (p->val == key)//当前节点就是删除目标
		break;
	parent = p;
	st.push(parent);//存储轨迹
	if (key > p->val)//删除目标在右树
		p = p->right;
	else//删除目标在左树
		p = p->left;
}
//执行到此处,p要么为预想的删除目标,要么为nullptr(即不存在)
//下一步应该是判断删除目标的类型,进行转化

判断删除类型,进行转化

说起删除目标的类型,只有两种:

  1. 删除目标存在两个子树(或节点)
  2. 删除目标最多仅有1个子女
删除目标存在两个子女

下图即是该情况的处理手段:
在这里插入图片描述
利用转化思想将非叶子节点转化为删除叶子节点,难度大大降低。

删除目标最多仅有1个子节点

只有一个子节点,非常容易处理,我们只需要令删除目标的父节点链接删除目标的子节点,再删除目标即可。如下图所示:
在这里插入图片描述
当然在这里面存在一种较特殊的情况,即整棵树只有两个节点,且删除目标是根节点。这种情况下我们直接令子节点成为根节点即可。如下:
在这里插入图片描述

删除一个节点就是如此简单,归根结底最后的删除类型只有一种:删除目标最多仅有1个子节点

此部分代码大致如下:

if (p==nullptr)//删除目标不存在
	return false;
//删除节点
if (p->left && p->right) {//删除目标左右皆有
	parent = p;
	q = p->left;
	st.push(parent);
	while (q->right) {
		parent = q;
		st.push(parent);
		q = q->right;
	}
	p->val = q->val;
	p = q;//转化为删前驱
}
//p是删除目标,q是删除目标的子女节点
if (p->left)
	q = p->left;
else
	q = p->right;
if (parent==nullptr)//删除目标是整棵AVL的根节点
	t = q;
else {
	//断开p节点,链接它的子女q
	if (parent->left == p) //删除目标是左孩子
		parent->left = q;
	else//删除目标是右孩子
		parent->right = q;
}
//下一步应该是调整平衡

但接下来的才是重中之重,那就是调整平衡,因为删除节点,必然引起路径上某些节点的平衡因子,被删目标的父节点首当其冲。

因此确定真正的删除目标后,需要根据存储的路径向上回溯调整结构,维持AVL树的性质。

调整平衡

上文可以得出本文在代码中是定义p为删除目标,因此下文沿用。

首先,我们应明白的是:

  1. 若p是其父节点parent的左子女,删除p,引起左树高度降低,因此parent平衡因子需要+1
  2. p是其父节点parent的右子女,删除p,引起右树高度降低,因此parent平衡因子需要-1
  3. 因为parent的父节点也会受parent的影响,因此有可能也需要调整,所以有可能这个调整需要不断往上追溯

调整平衡需要分3种情况:

1.parent的平衡因子原来为0

在这里插入图片描述

这种情况下,无论删除parent的左子树还是右子树上的节点,但是不会影响到以parengt为父节点的子树高度,因此这种情况下只需要改变parent的平衡因子即可:0------>1/-1

2. parent的平衡因子原来绝对值为1,且被删节点位于较高的子树

在这里插入图片描述
可以发现,该种情况下,删除支树上的节点将使得parent的平衡因子变为0。但由于删除使得该支树高度减1,因此需要向上平衡,沿着栈中存储的路径回溯。

因此,父节点平衡因子改动后并不意味着完成了平衡,而要追溯修改更上层的祖先节点。

3. parent的平衡因子原来绝对值为1,且被删节点位于较矮的子树

在这种情况下,删除较矮子树上的节点,parent的平衡因子会变为2/-2,parent失衡,光是调整平衡因子已经不能解决问题,而是需要旋转操作进行再平衡

情况1:

parent的平衡因子为2,q的平衡因子为0,执行一次左单旋即可结束平衡工作;反之,parent的平衡因子为-2,q的平衡因子为0,执行一次右单旋即可结束平衡工作;
在这里插入图片描述

情况2:

parent的平衡因子与q的平衡因子同符号,则可以使用一个单旋转进行再平衡。如下图所示,二者皆为正,进行一次左旋即可平衡目前的支树结构。但由于旋转导致parent的父节点高度减1,所以需要继续向上考察路径中的平衡状态。
在这里插入图片描述

情况3:

parent的平衡因子与q的平衡因子异符号,则需要使用双旋转进行再平衡。但由于旋转导致parent的父节点高度减1,所以需要继续向上考察路径中的平衡状态。
在这里插入图片描述

AVL类代码

#include <iostream>
#include <vector>
#include <stack>
#include <vld.h>
using namespace std;

template<class Ty>
class AVLTree;

template<class Ty>
class AVLNode {
	friend class AVLTree<Ty>;
public:
	AVLNode() :val(Ty()), bf(0),left(nullptr),right(nullptr){}
	AVLNode(Ty _val = Ty(),int _bf = 0, AVLNode<Ty>* l = nullptr, AVLNode<Ty>* r = nullptr) :
		val(_val), bf(_bf),left(l), right(r) {}
	~AVLNode() {
		left = nullptr;
		right = nullptr;
		bf = 0;
	}
private:
	AVLNode<Ty>* left;
	AVLNode<Ty>* right;
	Ty val;
	int bf;
};

template<class Ty>
class AVLTree {
	typedef AVLNode<Ty> Node;
public:
	AVLTree() :root(nullptr) {}
	AVLTree(const vector<Ty>& v) :root(nullptr) {
		for (auto& e : v)
			Insert(e);
	}
	~AVLTree() {
		while (root!=nullptr)
			Remove(root->val);
	}
public:
	bool Insert(const Ty& data) { return Insert(root, data); }
	bool Remove(const Ty& key) { return Remove(root, key); }
	void InOrder() { return InOrder(root); }
protected:
	bool Insert(Node*& t, const Ty& data) {
		//先按BST插入节点,寻找插入位置过程中存储轨迹
		Node* parent = nullptr;
		Node* p = t;
		stack<Node*> st;
		while (p){
			if (p->val == data)//重复数据不可插入
				return false;
			parent = p;
			st.push(parent);
			if (data > p->val)
				p = p->right;
			else
				p = p->left;
		}
		p = new Node(data);
		if (!parent) {//空树
			t = p;
			return true;
		}
		if (p->val > parent->val)//左小右大插入
			parent->right = p;
		else
			parent->left = p;
		//调整树,使BST->AVL
		while (!st.empty()) {
			parent = st.top();
			st.pop();
			if (p == parent->left)//左树升高
				--parent->bf;
			else
				++parent->bf;
			if (!parent->bf)//父节点平衡
				break;
			else if (parent->bf == 1 || parent->bf == -1) 
				p = parent;//向上回溯
			else {//本节点不平衡,需要调整
				if (parent->bf < 0) {
					if (p->bf < 0)//右旋(/)
						RotateR(parent);
					else//左右双旋(<)
						RotateLR(parent);
				}
				else {
					if (p->bf > 0)//左旋(\)
						RotateL(parent);
					else//右左双旋(>)
						RotateRL(parent);
				}
				break;//已平衡,跳出
			}
		}
		//因旋转导致的原不平衡的节点被两次指向,需要调整
		if (st.empty())
			t = parent;
		else {
			Node* q = st.top();
			if (parent->val < q->val)
				q->left = parent;
			else
				q->right = parent;
		}
		return true;
	}
	bool Remove(Node*& t, const Ty& key) {
		Node* parent = nullptr;
		Node* p = t, * q = nullptr;
		stack<Node*> st;
		while (p) {		//先找到节点,存储轨迹
			if (p->val == key)
				break;
			parent = p;
			st.push(parent);
			if (key > p->val)
				p = p->right;
			else
				p = p->left;
		}
		if (p==nullptr)//删除目标不存在
			return false;
		//删除节点
		if (p->left && p->right) {//删除目标左右皆有
			parent = p;
			q = p->left;
			st.push(parent);
			while (q->right) {
				parent = q;
				st.push(parent);
				q = q->right;
			}
			p->val = q->val;
			p = q;//转化为删前驱
		}
		//p是删除目标,q是删除目标的子女节点
		if (p->left)
			q = p->left;
		else
			q = p->right;
		bool Isleft = false;
		if (parent==nullptr)//删除目标是整棵AVL的根节点
			t = q;
		else {
			//断开p节点,链接它的子女q
			if (parent->left == p) { //删除目标是左孩子
				parent->left = q;
				Isleft = true;
			}
			else//删除目标是右孩子
				parent->right = q;
		}
		//调整平衡
		bool isbanlanced = false;
		while (!st.empty()) {
			parent = st.top();
			st.pop();
			if(Isleft)
				++parent->bf;
			else
				--parent->bf;
			if (parent->bf == 1 || parent->bf == -1)//平衡
				break;
			if (0 == parent->bf) { //向上回溯调整
				q = parent;
				if(st.size())//重置isleft
					Isleft = st.top()->left == q ? true : false;
			}
			else {//parent失衡
				if (parent->bf > 0)//令q指向较高的树
					q = parent->right;
				else
					q = parent->left;
				if (q->bf == 0){//单旋转
					if (parent->bf < 0){
						RotateR(parent);
						parent->bf = 1;
						parent->right->bf = -1;
					}
					else{
						RotateL(parent);
						parent->bf = -1;
						parent->left->bf = 1;
					}
					isbanlanced = true;
				}
				else {
					if (parent->bf < 0) {
						if (q->bf < 0)  //   /
							RotateR(parent);
						else           //   <
							RotateLR(parent);
					}
					else {
						if (q->bf > 0)  //   \ 
							RotateL(parent);
						else           //   >
							RotateRL(parent);
					}
				}
				//重新链接
				if (st.empty())
					t = parent;
				else {
					q = st.top();
					if (parent->val < q->val)
						q->left = parent;
					else
						q->right = parent;
				}
				if (isbanlanced)
					break;
			}
		}
		delete p;
		return true;
	}
	void InOrder(Node*& root) {
		if (root) {
			InOrder(root->left);
			cout << root->val << " ";
			InOrder(root->right);
		}
	}
private:
	void RotateL(Node*& t) {
		Node* subL = t;
		t = subL->right;//子节点将变父节点
		subL->right = t->left;//子节点的左树成为父节点的右树
		t->left = subL;//父节点左旋
		subL->bf = t->bf = 0;
	}
	void RotateR(Node*& t) {
		Node* subR = t;
		t = subR->left;//子节点将变父节点
		subR->left= t->right;//子节点的右树成为父节点的左树
		t->right = subR;//父节点右旋
		subR->bf = t->bf = 0;
	}
	void RotateLR(Node*& t) {
		Node* subL, * subR;
		subR = t;
		subL = subR->left;
		t = subL->right;

		subL->right = t->left;
		t->left = subL;
		if (t->bf <= 0)
			subL->bf = 0;
		else 
			subL->bf = -1;
		subR->left = t->right;
		t->right = subR;
		if (t->bf >= 0)
			subR->bf = 0;
		else
			subR->bf = 1;
		t->bf = 0;
	}
	void RotateRL(Node*& t) {
		Node* subL, * subR;
		subL = t;
		subR = subL->right;
		t = subR->left;

		subR->left =  t->right;
		t->right = subR;
		if (t->bf >= 0)
			subR->bf = 0;
		else
			subR->bf = 1;

		subL->right = t->left;
		t->left = subL;
		if (t->bf <= 0)
			subL->bf = 0;
		else
			subL->bf = -1;

		t->bf = 0;
	}
private:
	Node* root;
};
int main() {
	vector<int> iv{ 16, 3, 7 , 11, 9, 26, 18, 14, 15 };
	AVLTree<int> avl(iv);
	avl.Remove(7);
	avl.Remove(16);
	avl.Remove(3);
	avl.Remove(15);
	avl.Remove(3);
	avl.Remove(18);
	avl.Remove(14);
	avl.Remove(26);
	avl.Remove(9);
	return 0;
}
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值