注意:本文引用自专业人工智能社区Venus AI
更多AI知识请参考原站 ([www.aideeplearning.cn])
问题描述
- 梯度弥散:在深层神经网络中,梯度弥散是指在反向传播过程中梯度逐渐变小,以至于在网络的较浅层梯度接近于零。导致网络的这些层的权重几乎不更新,使得模型难以学习到输入数据的复杂特征。
- 梯度爆炸:相对地,梯度爆炸是指梯度在反向传播过程中变得异常大,导致权重更新过度,从而造成模型参数极端不稳定,甚至数值溢出。这会导致模型无法收敛,训练过程中的权重更新剧烈,使得模型性能大幅下降。
我们用 Python 脚本来可视化梯度消失和梯度爆炸现象,可以创建一个深层神经网络并通过它传递一些随机数据,然后观察不同层的梯度大小。为了简化,我们可以使用一个全连接的神经网络,并使用不同的激活函数来模拟梯度消失和爆炸。
在下面的例子中,我将构建一个简单的深层神经网络,使用 PyTorch 进行演示。我们将观察在正向传播后,通过反向传播计算的梯度在不同层的大小。这将帮助我们理解梯度消失和爆炸是如何发生的。
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
# 定义一个简单的多层全连接神经网络
class SimpleNet(nn.Module):
def __init__(self, layer_sizes, init_method=None):
super(SimpleNet, self).__init__()
layers = []
for i in range(len(layer_sizes) - 1):
layers.append(nn.Linear(layer_sizes[i], layer_sizes[i + 1]))
layers.append(nn.ReLU())
self.net = nn.Sequential(*layers[:-1]) # 移除最后一个ReLU
# 应用初始化方法
if init_method:
for layer in self.net:
if type(layer) == nn.Linear:
init_method(layer.weight)
def forward(self, x):
return self.net(x)
def visualize_gradients(layer_sizes, init_method=None):