
小样本学习
文章平均质量分 93
普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【跨域小样本】Cross-Domain Learned Feature-wise Transformation
原文链接:https://mp.weixin.qq.com/s/5F4OB9ghpplO637KWcxT1Q1.介绍论文地址:Cross-Domain Few-Shot Classification via Learned Feature-wise Transformationhttps://arxiv.org/abs/2001.08735参考代码:https://github.com/hytseng0509/CrossDomainFewShot针对问题:跨域小样本学习、.原创 2021-08-17 21:13:24 · 765 阅读 · 0 评论 -
【论文解读】跨域小样本学习:A Broader Study of Cross-Domain Few-Shot Learning
1.介绍论文地址:A Broader Study of Cross-Domain Few-Shot Learning参考代码:https://github.com/IBM/cdfsl-benchmark针对问题:小样本学习、跨域学习Cross-Domain少数镜头学习的最新进展在很大程度上依赖于元学习的注释数据:从与新类相同的域中采样的基类。然而,在许多应用中,为元学习收集数据是不可行或不可能的。这就导致了跨领域的少镜头学习问题,在这个问题中,基本类域和新类域之间有很...原创 2021-08-16 17:11:59 · 2746 阅读 · 0 评论 -
【论文推送】跨域学习、跨域小样本学习Cross-Domain(持续更新...)
深度神经网络(DNN)的泛化性能相当依赖于训练集的规模(size)和丰富性(variations). 但是在很多场景下无法搜集到如此多的数据, 如皮肤病, 卫星图片(飞机残骸).尽管每种特殊的情况发生的概率很低, 人为处理的成本也很低, 但当我们有大量的”特殊情况”时, 问题就变得复杂了起来.如何利用一个或一些成熟域上的先验知识,去解决另一个样缺少样本域上的复杂任务是跨域少样本学习 (Cross-Domain Few Shot Learning)研究的主要问题。本文主要记录该领...原创 2021-08-13 15:50:03 · 4741 阅读 · 0 评论 -
【论文解读】Exploring Complementary Strengths of Invariant and Equivariant Representations(小样本等变和不变的互补)
1. 介绍原文链接:Invariant and Equivariant Representations(小样本等变和不变的互补)论文地址:Exploring Complementary Strengths of Invariant and EquivariantRepresentations for Few-Shot Learning;参考代码:https://github.com/nayeemrizve/invariance-equivariance针对问题:小样本.原创 2021-08-11 09:30:44 · 1088 阅读 · 0 评论 -
【论文解读】MMNet: Memory Matching Networks for One-Shot Image Recognition(记忆匹配网络,小样本)
1. 介绍论文地址:Memory Matching Networks for One-Shot Image Recognition, CVPR 2018.或者 Matching networks for one shot learning.NIPS2016.参考代码:https://github.com/gitabcworld/MatchingNetworks针对问题:小样本学习、对未标记图像进行one-shot学习形式化来说,few-shot 的训练集中包含了很多的类别,每个类别中..原创 2021-07-22 11:47:18 · 1452 阅读 · 0 评论 -
【论文解读】TapNet: Task-Adaptive Projection for Few-Shot Learning(任务自适应映射网络,小样本)
1. 介绍论文地址:TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning, PMLR 2019.针对问题: 在机器学习中,仅给出几个训练示例后处理以前看不见的任务仍然是一个艰巨的挑战。文章贡献: 提出一种基于度量学习的小样本学习算法(TapNet,任务自适应映射网络),其特点是网络与每类的参考向量是多任务学习得到的,每个episode,嵌入向量被线性地映射到一个新的空间,..原创 2021-07-15 22:18:12 · 1407 阅读 · 1 评论 -
【论文整理】小样本学习Few-shot learning论文整理收藏(最全,持续更新)
一、综述类1.Generalizing from a Few Examples: A Survey on Few-Shot Learning2.Generalizing from a few examples: A survey on few-shot learning, CSUR, 2020.3.Rethinkingfew-shotimage classification: a good embedding is all you need?ECCV2020.4.Prototyp...原创 2021-07-14 21:31:56 · 10014 阅读 · 0 评论