第十二届蓝桥杯国赛最小权值(递推)

该博客探讨了一道关于有根二叉树节点权值的优化问题,其中权值由节点的子树结构决定。通过分析递推公式,作者提出采用动态规划的方法避免全排列枚举,从1到2021节点逐步计算最小权值,最终得出答案为2653631372。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 问题描述:

对于一棵有根二叉树 T,小蓝定义这棵树中结点的权值 W(T) 如下:空子树的权值为 0。如果一个结点 v 有左子树 L, 右子树 R,分别有 C(L) 和 C(R) 个结点,则:
W(v) = 1 + 2W(L) + 3W(R) + (C(L)) ^ 2 C(R)。
树的权值定义为树的根结点的权值。小蓝想知道,对于一棵有 2021 个结点的二叉树,树的权值最小可能是多少?

2. 思路分析:

分析题目可以知道2021个节点的二叉树的形态是具有很多种的,我们需要在节点数为2021的所有二叉树中找出一棵二叉树使得W(v) = 1 + 2W(L) + 3W(R) + (C(L)) ^ 2 C(R)的值是最小的,分析这个式子可以知道这个式子其实是一个递推方程,从理论上我们可以使用递归尝试所有的可能的方案(尝试左右两边可能的节点情况)但是由于节点数太大了实际上是不可行的,本质上题目给出的这个式子就是状态转移方程,直接根据这个式子进行递推即可,我们可以从小范围的节点数目一直递推到大范围的节点数目,这样其实就是尝试所有可能的二叉树的所有形态了,最后返回数组中的最后一个节点的值即可。(递推或者是动态规划都可以看成是暴力枚举的优化)一般来说可以使用递归解决的问题我们不妨考虑一下是否可以使用递推或者是动态规划的思路解决。

3. 代码如下:

答案是2653631372

import sys
if __name__ == '__main__':
    # 空节点的节点值为0
    dp = [0]
    for i in range(1, 2022):
        dp.append(sys.maxsize)
        for j in range(i):
            # 左边节点j个右边节点i - 1 - j个
            dp[i] = min(dp[i], 1 + 2 * dp[j] + 3 * dp[i - 1 - j] + j * j * (i - 1 - j))
    print(dp[2021])

 

### C++蓝桥杯题目与解题思路 以下是对C++蓝桥杯相关题目及解题思路的详细分析: #### 1. 动态规划(DP)问题 动态规划是蓝桥杯中常见的考点之一。例如,第十三届蓝桥杯中的填空题第一题涉及动态规划[^1]。在比中,如果遇到复杂的动态规划问题,可以尝试从简单的情况入手,逐步推导状态转移方程。此外,对于类似“费用报销”或“LCA”类问题,应确保对题目理解准确,避免因读题错误导致丢分[^1]。 #### 2. 暴力解法优化 蓝桥杯中,部分题目可以通过暴力方法解决,但需要考虑时间复杂度优化。例如,在某届中,选手提到使用暴力解法未能获得理想分数[^3]。因此,建议在暴力解法的基础上结合剪枝或其他优化技术,以提高效率。例如,对于网格联通问题,可以通过定义状态转移方程来减少冗余计算[^4]。 #### 3. 形结构与背包问题 形结构和背包问题是蓝桥杯中的经典考点。例如,给定一棵,要求去掉一些叶子节点使得非叶子节点满足特定条件[^1]。这类问题通常可以通过形动态规划或bitset优化的背包算法解决。具体实现时,可以预处理节点信息并利用递归方式构建状态转移矩阵[^4]。 #### 4. 数学问题与规律总结 数学问题是蓝桥杯中的重要组成部分。例如,2019年第十届蓝桥杯中的一道题目要求将2019分解为若干个两两不同的素数之和[^5]。此类问题通常需要结合动态规划或深度优先搜索(DFS)进行求解。同时,注意理解题目要求,避免因误解题意导致错误答案。 #### 5. 网格与路径问题 网格问题也是蓝桥杯中的常见类型。例如,给定一个2*n的网格,要求通过替换字符使所有“#”联通[^4]。针对此类问题,可以采用动态规划或广度优先搜索(BFS)算法,通过定义合适的状态转移方程实现最优解。 以下是部分代码示例: ```python # 动态规划示例:费用报销问题 def dp_solution(arr, limit): n = len(arr) dp = [[0] * (limit + 1) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(limit + 1): if j >= arr[i - 1]: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - arr[i - 1]] + arr[i - 1]) else: dp[i][j] = dp[i - 1][j] return dp[n][limit] # 形动态规划示例:叶子节点权值和问题 def tree_dp(root, children, weights): def dfs(node): if not children[node]: return weights[node] total = 0 for child in children[node]: total += dfs(child) return min(weights[node], total) return dfs(root) ``` ### 注意事项 - 在比过程中,保持冷静心态,避免因惧怕心理放弃尝试某些题目[^2]。 - 合理安排时间,避免因某道题卡壳而影响整体发挥[^3]。 - 提前熟悉常用算法模板,如动态规划、形结构、数学问题等,以便快速应用到实际题目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值