1. 问题描述:
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。
示例 2:
输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。
提示:
1 <= s.length <= 1000
s 仅由小写英文字母组成
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/longest-palindromic-subsequence/
2. 思路分析:
对于子序列的相关问题我们可以尝试动态规划的思路解决,动态规划主要有两个步骤:① 状态表示 ② 状态计算。由题可知我们需要求解出整个字符串的最长回文子序列,也即求解区间 [0,len(s)] 的最长回文子序列,所以我们可以考虑区间 dp 解决,我们可以定义一个二维数组 dp(区间 dp一般定义为二维),dp[i][j] 表示区间 [i,j] 的最长回文子序列的最大长度,如何进行状态的计算呢?状态计算对应集合的划分,一般是找最后一个不同点,对于区间 [i,j] 我们可以考虑以下四种情况:① 区间 i,j 端点都包含在最长回文子序列中;② 区间端点 i 包含,端点 j 不包含在最长回文子序列中;③ 区间端点 i 不包含,端点 j 包含在最长回文子序列中;④ 区间 i,j 端点都不包含在最长回文子序列中;对于 ① 需要满足 s[i] == s[j],所以 dp[i][j] = dp[i + 1][j - 1] + 2, 对于 ②,我们知道 dp[i][j - 1] 既包含了区间端点 i 存在的情况又包含区间端点 i 不存在的情况,所以我们是可以直接使用 dp[i][j - 1] 来计算区间 ② 的情况,对于 ③ 也是类似的,dp[i + 1][j] 既包含了区间端点 j 在又包含了区间端点 j 不在的情况,所以也是可以用 dp[i + 1][j] 来计算第 ③ 种情况(对于 ②③ 这两种情况对计算的结果是没有什么影响的),对于 ④ 可以发现是包含在 ②③ 这两种情况中的,所以我们在计算的时候只需要在 ①②③中取一个 max 即可:
3. 代码如下:
python:
class Solution:
# 区间dp
def longestPalindromeSubseq(self, s: str) -> int:
n = len(s)
dp = [[0] * n for i in range(n)]
# 第一层枚举区间长度
for l in range(1, n + 1):
i = 0
# i为区间起点, i + l - 1为区间终点
while i + l - 1 < n:
j = i + l - 1
# 区间长度为1那么最长回文子序列的值为1
if l == 1:
dp[i][j] = 1
else:
# 区间的左右两个端点都是存在的
if s[i] == s[j]:
dp[i][j] += dp[i + 1][j - 1] + 2
# 计算其余两种情况, 三种情况取一个max
else:
dp[i][j] = max(dp[i][j], dp[i + 1][j], dp[i][j - 1])
i += 1
return dp[0][n - 1]
go:
package main
import "fmt"
func max(a, b int) int {
if a > b {
return a
}
return b
}
// 区间dp
func longestPalindromeSubseq(s string) int {
n := len(s)
// 初始化二维切片
f := make([][]int, n+10)
for i := 0; i < n+10; i++ {
f[i] = make([]int, n+10)
}
// 经典的区间dp框架: 先枚举长度, 再枚举起点, 然后枚举所有以当前起点长度为l的dp值
for l := 1; l <= n; l++ {
i := 0
for ; i+l-1 < n; i++ {
j := i + l - 1
if l == 1 {
// 回文串的长度为1
f[i][j] = 1
} else {
// 由长度较小的递推求解长度较大的当求解f[i][j]的时候那么f[i+1][j-1],f[i+1][j],f[i][j-1]肯定求解出结果了
if s[i] == s[j] {
f[i][j] = f[i+1][j-1] + 2
} else {
f[i][j] = max(f[i+1][j], f[i][j-1])
}
}
}
}
return f[0][n-1]
}