1. 问题描述:
给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
输入格式
第一行包含整数 N,表示数组长度。第二行包含 N 个不超过 10000 的正整数,表示完整的数组。
输出格式
输出一个整数,表示最大利润。
数据范围
1 ≤ N ≤ 10 ^ 5
输入样例:
5
1 2 3 0 2
输出样例:
3
样例解释
对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出],第一笔交易可得利润 2-1 = 1,第二笔交易可得利润 2-0 = 2,共得利润 1+2 = 3。
来源:https://www.acwing.com/problem/content/1060/
2. 思路分析:
股票问题属于经典的状态机问题,主要是如何根据题目的描述转化为清晰的状态机描述,这道题目类似于股票问题IV,其实是多了一个冷冻期的状态但是分析的过程也是类似的,我们可以根据题目的描述画出状态机描述如下图所示,这道题目没有交易次数的限制所以我们定义一个二维数组即可,其中dp[i][0]表示前i天手中有货的状态,dp[i][1]表示手中无货的第一天,dp[i][2]表示手中无货的第k天(k >= 2),根据状态机描述编写代码即可:
3. 代码如下:
if __name__ == '__main__':
n = int(input())
a = list(map(int, input().split()))
INF = 10 ** 10
dp = [[0] * 3 for i in range(n + 1)]
dp[0][0] = dp[0][1] = -INF
# 一开始的时候可以买入股票所以只有dp[i][2]是合法的
dp[0][2] = 0
for i in range(1, n + 1):
dp[i][0] = max(dp[i - 1][0], dp[i - 1][2] - a[i - 1])
dp[i][1] = dp[i - 1][0] + a[i - 1]
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1])
# 最终两个出口取一个max
print(max(dp[n][1], dp[n][2]))