欧拉方法与改进欧拉方法
一、算法原理
对给定微分方程
{
y′=f(x,y)y(x0)=y0(1) \begin{cases} y' = f(x,y)\\ y(x_0) = y_0 \end{cases}\tag{1} {
y′=f(x,y)y(x0)=y0(1)
在xn到xn+1上积分,得到
yn+1=yn+∫xnxn+1f(t,y(t))dt(2) y_{n+1} = y_n + \int_{x_n}^{x_{n+1}}f(t,y(t))dt \tag{2} yn+1=yn+∫xnxn+1f(t,y(t))dt(2)
如果用左矩形公式做了个(2)式中积分的近似,那可以得到欧拉公式。