import numpy as np
import pandas as pd
from sklearn.linear_model import BayesianRidge, LinearRegression, ElasticNet
from sklearn.svm import SVR
from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor
from sklearn.model_selection import cross_val_score
from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt
import seaborn as sns
import os
def mkdir(path_3):
folder = os.path.exists(path_3)
if not folder:
os.makedirs(path_3)
print("--- new folder... ---")
print("--- OK ---")
else:
print("--- There is this folder! ---")
def read_csv(gaze_path, gaze_csv, eeg_path, eeg_csv):
gaze_data = pd.DataFrame(pd.read_csv(gaze_path + gaze_csv, encoding="utf-8", engine='python'))
Clpd = np.array(gaze_data['clpd'])
brain_data = pd.DataFrame(pd.read_csv(eeg_path + eeg_csv, encoding="utf-8", engine='python'))
Delta = np.array(brain_data['Delta'])
Theta = np.array(brain_data['Theta'])
Alpha = np.array(brain_data['Alpha'])
Beta = np.array(brain_data['Beta'])
print(gaze_csv,eeg_csv)
print(len(gaze_data))
print(len(brain_data))
Corr_data = []
if int(len(Clpd)