SLAM图优化poseGraph-(1)由来和概念

本文深入探讨了SLAM图优化的必要性及其在解决大环境建图时首尾不衔接问题上的应用。通过引入PoseGraph的概念,详细解释了如何通过优化顶点和边来最小化里程计预测与激光雷达观测之间的误差,实现最优路径规划。

1.slam图优化由来

  • slam前端是激光帧和激光帧或激光帧和地图的匹配,用来建立增量式地图。
  • 后端是闭环检测和优化问题。

在比较大的环境中,我们跑一圈建图,会发现首尾地图常常无法衔接,或根本就对不准。此时就需要用到posegraph图优化,来调整各个子图位姿。

2.poseGraph概念

图优化和一般的数值优化都属于优化问题,只是图优化把优化问题表现成图结构(graph)。

  • 一个图graph,由若干顶点vertex以及连接的边edge组成,顶点表示待优化变量,而边表示约束constraint或误差项error。
    在这里插入图片描述
    For example:
    在一个slam问题中,图优化的顶点表示为机器人里程计的位姿Xi和Xj。边可表示为scan_to_map或scan_to_scan的激光雷达匹配结果,是一个相对位姿,表示为边Z。
    我们的目的就是要找到一个最优的配置(poses),使得里程计预测和激光雷达观测的误差最小,于是建立了一个最小二乘问题的图优化问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值