C#: 实现相似性匹配算法 SimHash

64 篇文章 ¥59.90 ¥99.00
本文介绍了使用C#实现SimHash算法的步骤,包括分词、特征哈希、加权、指纹合并和归一化。通过计算汉明距离评估文本相似度,示例代码展示了如何对两个文本进行相似性匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C#: 实现相似性匹配算法 SimHash

SimHash 是一种用于计算文本或数据相似性的算法。它将文本或数据转换为一个固定长度的指纹(fingerprint),并使用汉明距离(Hamming Distance)来度量指纹之间的相似程度。在这篇文章中,我们将使用 C# 编程语言来实现 SimHash 算法,并展示如何使用它来进行相似性匹配。

SimHash 算法的实现步骤如下:

  1. 分词:将文本或数据分解为一系列的特征项(tokens),比如单词、字符或其他语言中的基本单元。这里我们可以使用 C# 的字符串分割函数或正则表达式来实现。

  2. 特征哈希:对于每个特征项,将其哈希为一个固定长度的二进制码。这里我们可以使用 C# 的哈希函数,比如 MD5、SHA1 或 MurmurHash 等。

  3. 权重加权:对于每个特征项的哈希码,根据特征项的重要性对其进行加权。一种常见的方法是使用特征项的权重作为加权系数,比如特征项出现的频率或 TF-IDF 值。

  4. 指纹合并:将所有特征项的加权哈希码进行按位加权求和,得到一个总的指纹码。在这一步中,我们可以使用位运算符来实现。

  5. 指纹归一化:对于得到的总指纹码,将其进行归一化处理,即将所有位的值转换为 0 或 1。一种常见的方法是将每个位与阈值进行比较,大于阈值的位设为 1,小于等于阈值的位设为 0。

  6. 相似度计算:使用汉明距离来度量两个指纹码之间的相似度。汉明距离是指两个等长字符串之间对应位置上不同字符的个数。在 C# 中,我们可以使用位运算符来高效地计算汉明距离。

namespace ServiceRanking { /// <summary> /// Summary description for TF_IDFLib. /// </summary> public class TFIDFMeasure { private string[] _docs; private string[][] _ngramDoc; private int _numDocs=0; private int _numTerms=0; private ArrayList _terms; private int[][] _termFreq; private float[][] _termWeight; private int[] _maxTermFreq; private int[] _docFreq; public class TermVector { public static float ComputeCosineSimilarity(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFER LENGTH"); float denom=(VectorLength(vector1) * VectorLength(vector2)); if (denom == 0F) return 0F; else return (InnerProduct(vector1, vector2) / denom); } public static float InnerProduct(float[] vector1, float[] vector2) { if (vector1.Length != vector2.Length) throw new Exception("DIFFER LENGTH ARE NOT ALLOWED"); float result=0F; for (int i=0; i < vector1.Length; i++) result += vector1[i] * vector2[i]; return result; } public static float VectorLength(float[] vector) { float sum=0.0F; for (int i=0; i < vector.Length; i++) sum=sum + (vector[i] * vector[i]); return (float)Math.Sqrt(sum); } } private IDictionary _wordsIndex=new Hashtable() ; public TFIDFMeasure(string[] documents) { _docs=documents; _numDocs=documents.Length ; MyInit(); } private void GeneratNgramText() { } private ArrayList GenerateTerms(string[] docs) { ArrayList uniques=new ArrayList() ; _ngramDoc=new string[_numDocs][] ; for (int i=0; i < docs.Length ; i++) { Tokeniser tokenizer=new Tokeniser() ; string[] words=tokenizer.Partition(docs[i]); for (int j=0; j < words.Length ; j++) if (!uniques.Contains(words[j]) ) uniques.Add(words[j]) ; } return uniques; } private static object
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值