LeetCode -- 877. 石子游戏

/**
 * 877. 石子游戏
 *
 * 数学解法更加巧妙,但是通用性不强,此处只写动态规划做法
 * 
 * 动态规划
 * 1 每次从开头或者结尾取出石子,证明无论怎么取,剩余的石子一定是连续的
 * 2 限制条件:两个人所得石子的数目的差值
 * 3
 * 如果第一人先从左边取值, 则另一人必须从 [i + 1, j] 处获取石子,
 * 其二人获取石子的差值是 p[i] - dp[i + 1][j]
 * 如果第一个人从右边取值,则另一个人只能从 [i, j - 1]
 * 其二人获取石子的差值是 p[j] - dp[i + 1][j]
 * 两个人的最佳状态转移方程为 dp = max(p[i] - dp[i + 1][j], p[j] - dp[i][j - 1])
 *
 * 当 i == j 特殊情况,最后一堆石子,此时轮到谁谁拿走,dp[i][j] = p[i], 没有其余最优解
 *
 * 当 i > j 没有石子,dp[i][j] = 0
 *
 */
public class Solution877 {
  public boolean stoneGame(int[] piles) {
    int len = piles.length;
    int[][] dp = new int[len][len];
    for (int i = 0; i < len; i++) {
      dp[i][i] = piles[i];
    }
    for (int i = len - 2; i >= 0; i--) {
      for (int j = i + 1; j <= len - 1; j++){
        dp[i][j] = Math.max(piles[i] - dp[i + 1][j], piles[j] - dp[i][j - 1]);
      }
    }
    return dp[0][len - 1] > 0;
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值