题目链接:点击这里
题目大意:
给定一个长度为
n
n
n 的序列
a
i
a_i
ai ,你需要找到这个数组的一个子序列(要求编号连续),使得该序列中所有数的最大公约数和序列长度的乘积最大,并输出这个最大值。
即求:
m
a
x
l
≤
r
(
r
−
l
+
1
)
⋅
gcd
(
a
l
,
a
l
+
1
,
.
.
.
,
a
r
)
max_{l\le r}(r-l+1)·\gcd(a_l,a_{l+1},...,a_r)
maxl≤r(r−l+1)⋅gcd(al,al+1,...,ar)
题目分析:
一个经典结论:长度
n
n
n 的序列的所有子序列的最大公约数,最多有
log
n
\log n
logn 个,即集合
{
gcd
(
a
l
,
a
l
+
1
,
.
.
.
,
a
r
)
∣
l
≤
r
}
\{\gcd(a_l,a_{l+1},...,a_r)|l\le r\}
{gcd(al,al+1,...,ar)∣l≤r} 的元素个数不超过
l
o
g
2
n
log_2{n}
log2n 个
证明:
gcd
(
i
,
n
)
≤
n
/
2
(
i
<
n
)
\gcd(i,n)\le n/2\ (i<n)
gcd(i,n)≤n/2 (i<n) ,因为小于
n
n
n 且能被
n
n
n 整除的最大数字一定小于等于
n
/
2
n/2
n/2
所以子序列的
gcd
\gcd
gcd 往两边扩展的时候要么不变,要么减半,所以最多产生
log
n
\log n
logn 个新元素,即集合大小为
O
(
log
n
)
O(\log n)
O(logn)
由结论知,在我们固定左端点为
i
i
i 时,
[
i
,
n
]
[i,n]
[i,n] 这个去加子序列的
gcd
\gcd
gcd 最多有
O
(
log
n
)
O(\log n)
O(logn) 个,所以我们不妨把区间
gcd
\gcd
gcd 挂到
s
t
st
st 表上,然后就可以快速查询区间
gcd
\gcd
gcd 了,然后二分
gcd
\gcd
gcd 相同的区间右端点更新答案即可
时间复杂度为
O
(
n
l
o
g
2
n
)
O(nlog^2n)
O(nlog2n)
具体细节见代码:
// Problem: P5502 [JSOI2015]最大公约数
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P5502
// Memory Limit: 256 MB
// Time Limit: 1000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//#pragma GCC optimize(2)
//#pragma GCC optimize("Ofast","inline","-ffast-math")
//#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<unordered_map>
#define ll long long
#define inf 0x3f3f3f3f
#define Inf 0x3f3f3f3f3f3f3f3f
#define int ll
#define endl '\n'
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0)
using namespace std;
int read()
{
int res = 0,flag = 1;
char ch = getchar();
while(ch<'0' || ch>'9')
{
if(ch == '-') flag = -1;
ch = getchar();
}
while(ch>='0' && ch<='9')
{
res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
ch = getchar();
}
return res*flag;
}
const int maxn = 1e6+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
int n,a[maxn],st[21][maxn],res;
void init(int n)
{
for(int i = 1;i <= n;i++) st[0][i] = a[i];
for(int i = 1;(1<<i) <= n;i++)
for(int j = 1;j+(1<<i)-1 <= n;j++) st[i][j] = __gcd(st[i-1][j],st[i-1][j+(1<<(i-1))]);
}
int query(int l,int r)
{
int lg = __lg(r-l+1);
return __gcd(st[lg][l],st[lg][r-(1<<lg)+1]);
}
int find(int st,int l,int r,int val)
{
int res = 0;
while(l <= r)
{
int mid = l+r>>1;
if(query(st,mid) == val) l = mid+1,res = mid;
else r = mid-1;
}
return res;
}
signed main()
{
n = read();
for(int i = 1;i <= n;i++) a[i] = read();
init(n);
for(int i = 1;i <= n;i++)
for(int l = i,r;l <= n;l = r+1)
{
int val = query(i,l);
r = find(i,l,n,val);
res = max(res,(r-i+1)*val);
}
cout<<res<<endl;
return 0;
}