1027. 方格取数
某人从图中的左上角 A 出发,可以向下行走,也可以向右行走,直到到达右下角的 B 点。
在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从 A 点到 B 点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。
相比与普通的走格子,寻找最大路径,不同点在于:走两条路径。因此DP的维数增加,用4维表示当前的一个状态。
又因为两个路径走过的步数是一样的,所以可以运用等价关系降维:k=i1+j1=i2+j2
起点:2个点
终点:2个点
会出现两条路径重复的情况,对重复的情况进行判断,然后加上相应的权重。
#include<bits/stdc++.h>
using namespace std;
const int N=15;
int n;
int grid[N][N]={0};
int dp[2*N][N][N]={0};
int main(){
cin>>n;
int a,b,c;
while(1){
cin>>a>>b>>c;
if(a==0&&b==0&&c==0) break;
grid[a][b]=c;
}
for(int k=2;k<=n+n;k++){
for(int i1=1;i1<=n;i1++){
for(int i2=1;i2<=n;i2++){
int j1=k-i1,j2=k-i2;
if(j1>=1&&j1<=n&&j2>=1&&j2<=n){
int value=grid[i1][j1];
if(i1!=i2) value+=grid[i2][j2];
int &x=dp[k][i1][i2];
x=max(dp[k-1][i1-1][i2-1]+value,x);
x=max(dp[k-1][i1-1][i2]+value,x);
x=max(dp[k-1][i1][i2-1]+value,x);
x=max(dp[k-1][i1][i2]+value,x);
}
}
}
}
printf("%d",dp[2*n][n][n]);
}
275. 传纸条
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。
一次素质拓展活动中,班上同学安排坐成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。
幸运的是,他们可以通过传纸条来进行交流。
纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 (1,1),小轩坐在矩阵的右下角,坐标 (m,n)。
从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。
班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙,反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用 0 表示),可以用一个 0∼100 的自然数来表示,数越大表示越好心。
小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。
现在,请你帮助小渊和小轩找到这样的两条路径。
输入格式
第一行有 2 个用空格隔开的整数 m 和 n,表示学生矩阵有 m 行 n 列。
接下来的 m 行是一个 m×n 的矩阵,矩阵中第 i 行 j 列的整数表示坐在第 i 行 j 列的学生的好心程度,每行的 n 个整数之间用空格隔开。
输出格式
输出一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。
数据范围
1≤n,m≤50
AcWing 275. 证明传纸条为何可以使用方格取数的代码
大佬的解释非常清晰~ 如果两条路径经过重复的点了的话,那么第二次取该重复的点必定权重为0,而绕路获得的权值则大于等于0,因此用方格取数的思路找出两条路径同时走数字和最大的就可以了
根据题意稍作修改上一题code即可:
#include<bits/stdc++.h>
using namespace std;
const int N=55;
int main(){
int n,m;
cin>>n>>m;
int grid[N][N]={0};
int dp[2*N][N][N]={0};
int v;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>v;
grid[i][j]=v;
}
}
for(int k=2;k<=n+m;k++){
for(int i1=1;i1<=n;i1++){
for(int i2=1;i2<=n;i2++){
int j1=k-i1,j2=k-i2;
if(j1>=1&&j1<=m&&j2>=1&&j2<=m){
int value=grid[i1][j1];
if(i1!=i2) value+=grid[i2][j2];
int &x=dp[k][i1][i2];
x=max(dp[k-1][i1-1][i2-1]+value,x);
x=max(dp[k-1][i1-1][i2]+value,x);
x=max(dp[k-1][i1][i2-1]+value,x);
x=max(dp[k-1][i1][i2]+value,x);
}
}
}
}
printf("%d",dp[n+m][n][n]);
}