Fisher线性判别分析Fisher Linear Distrimination

Fisher线性判别分析是一种以最大化类间距离和最小化类内距离为目标的线性分类方法。它通过将高维数据投影到一维空间,使得不同类别的样本点能有效分离。在二维数据中,该方法寻找最佳投影向量,使得类均值之间的距离平方最大,而类内方差最小。通过求解优化问题,可以得到最优的投影方向,从而实现样本的有效分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fisher线性判别分析是一种线性分类方法,它的主要思想是:是类内的方差小,类均值之间相差比较大。(类间大,类内小)

以两个类的分类为例:

将两个类由在x1,x2上投影到向量u 上,这样由二维转到了一维,然后将两类从两团点的中间分开。

如果要使类间相差大的话,那么每个类的平均数之间也会相差大,设\mu_1,\mu_2分别为加号点和减号点的平均值,那么投影后,他们距离的平方,也就是||\mu_1^T\mu-\mu_2^T\mu||^2尽可能大。

如果要使类内方差小的话,那么两个类投影到直线(向量)上后,他们的点分别为\mu^T\Sigma_1\mu,\mu^T\Sigma_2\mu,表示两个协方差的投影。

\Sigma_1=( x-\mu_1)(x-\mu_1)^T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值