目录
目标
- 熟悉递归的几种优化策略(转化为非递归方法、保存已经存在的值的方法、尾递归方法)。
实战(以斐波那契数列为例)
什么是斐波那契数列
指的是这样一个数列:0、1、1、2、3、5、8、13、21、34……即当前项=左边相邻的两项之和。表达式为:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)。
实现
package com.ctx;
/**
*
* @describe 斐波那契数列:0、1、1、2、3、5、8、13、21、34
*/
public class A {
static int[] data;
public static void main(String[] args) {
long a=System.currentTimeMillis();
System.out.println("普通方法:"+A.fun(40));
System.out.println("普通方法用时:"+(System.currentTimeMillis()-a));
a=System.currentTimeMillis();
System.out.println("优化方法一(非递归):"+A.fun2(40));
System.out.println("优化方法一(非递归):"+(System.currentTimeMillis()-a));
a=System.currentTimeMillis();
System.out.println("优化方法二(保存递归值):"+A.fun3(40));
System.out.println("优化方法二(保存递归值):"+(System.currentTimeMillis()-a));
a=System.currentTimeMillis();
System.out.println("优化方法三(尾递归):"+A.fun4(0,1,40));
System.out.println("优化方法三(尾递归):"+(System.currentTimeMillis()-a));
}
/**
* 普通方法:根据表达式计算当前项。
* @param n
* @return
*/
public static int fun(int n){
if(n==1){
return 0;
}else if(n==2){
return 1;
}
return fun(n-1)+fun(n-2);
}
/**
* 优化方法一:非递归
* @param n
* @return
*/
public static int fun2(int n){
if(n==1){
return 0;
}else if(n<4){
return 1;
}
int a=1;
int b=1;
int c=0;
for(int i=3;i<n;i++){
c=a+b;
a=b;
b=c;
}
return c;
}
/**
* 优化方法二:保存递归的值,避免重复计算。
* @param n
*/
public static int fun3(int n){
if(n==1){
return 0;
}else if(n==2){
return 1;
}
if(data==null){
data = new int[n+1];
}
if(data[n]>0){
return data[n];
}else{
data[n]=fun3(n-1)+fun3(n-2);
}
return data[n];
}
/**
* 尾部递归
* 尾递归的核心思想是:避免函数之间的加减乘除操作,优化栈内存释放,即最后的return接的是一个函数而不是多个函数之间的操作。
* 时间复杂度:O(n)
* @param pre 上上一次运算出来的结果
* @param res 上一次运算出来结果
* @param n 当前项数
* @return
*/
public static int fun4(int pre,int res,int n) {
if(n==1){
return 0;
}else if (n < 3){
return res;
}
return fun4(res, pre + res, n -1);
}
}