LeetCode练习3:长度最小的子数组

该博客介绍了如何解决寻找数组中和大于等于目标值的最小子数组长度问题。提供了两种解决方案,一种是暴力求解,时间复杂度为O(n^2),另一种是使用滑动窗口的方法,优化到O(n)的时间复杂度。通过示例展示了算法的运行过程,包括输入和输出,帮助理解算法的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode链接:力扣

题目:

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1

代码一:(暴力法)时间复杂度O(n^2),空间复杂度O(1)

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int result = Integer.MAX_VALUE;
        int sum = 0;
        int subLength = 0;
        for(int i = 0; i < nums.length; ++i){
            sum = 0;
            for(int j = i; j < nums.length; ++j){
                sum += nums[j];
                if(sum >= target){
                    subLength = j - i + 1;
                    result = result < subLength ? result : subLength;
                    break;
                }
            }
        }
        return result == Integer.MAX_VALUE ? 0 : result;
    }
}

代码二:(滑动窗口)时间复杂度:O(n) 空间复杂度:O(1)

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int result = Integer.MAX_VALUE;
        int sum = 0;
        int subLength = 0;
        int i = 0;  //滑动窗口的起始位置
        for(int j = 0; j < nums.length; ++j){
            sum += nums[j];
            while(sum >= target){
                subLength = j - i + 1;
                result = result < subLength ? result : subLength;
                sum -= nums[i++];        //起始位向前移动
            }
        }
        return result == Integer.MAX_VALUE ? 0 : result;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三金samkam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值