贪心算法: 01背包问题

本文介绍了一个经典的背包问题求解案例,通过动态规划算法实现。针对给定的背包容量和若干物品,每件物品有体积与价值属性,目标是确定背包能够容纳的最大总价值。文章提供了一段Java代码示例,演示了如何通过二维数组迭代来计算最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目
现有一个容量大小为V的背包和N件物品,每件物品有两个属性,体积和价值,请问这个背包最多能装价值为多少的物品?

链接:https://www.nowcoder.com/questionTerminal/708f0442863a46279cce582c4f508658
来源:牛客网

输入描述:

第一行两个整数V和n。
接下来n行,每行两个整数体积和价值。1≤N≤1000,1≤V≤20000。
每件物品的体积和价值范围在[1,500]。

输出描述:

输出背包最多能装的物品价值。

示例1
输入
6 3
3 5
2 4
4 2
输出
9

import java.util.Scanner;
public class Package {
    /*
     * 背包总容量6
     *
     * 三组数据
     * 容量3    价值5
     * 容量2    价值4
     * 容量4    价值2
     *
     * */
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        /*
         * 背包容量*/
        int packMax = scanner.nextInt();
        int n = scanner.nextInt();
        Thing[] things = new Thing[n];
        for (int i = 0; i < n; i++) {
            int curVo = scanner.nextInt();
            int curMoney = scanner.nextInt();
            Thing thing = new Thing(curVo, curMoney);
            things[i] = thing;
        }
        /*定义数组,保存背包每一个体积对应的价值*/
        int[] packMoneyArr = new int[packMax + 1];
        for (int j = 0; j < n; j++) {
            for (int k = packMax; k > 0; k--) {
                int max = packMoneyArr[k];
                int packLeft = k - things[j].vo;
                if (packLeft >= 0
                        && max < things[j].money + packMoneyArr[packLeft]) {
                    max = things[j].money + packMoneyArr[packLeft];
                }
                if (max > packMoneyArr[k]) {
                    packMoneyArr[k] = max;
                }
            }
        }
        System.out.println(packMoneyArr[packMax]);
    }
}

class Thing {
    int vo;// 容量
    int money;// 价值

    public Thing(int vo, int money) {
        this.vo = vo;
        this.money = money;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值