【llm 微调code-llama 训练自己的数据集 一个小案例】

这也是一个通用的方案,使用peft微调LLM。

准备自己的数据集

根据情况改就行了,jsonl格式,三个字段:context, answer, question

import pandas as pd
import random
import json


data = pd.read_csv('dataset.csv')
train_data = data[['prompt','Code']]
train_data = train_data.values.tolist()

random.shuffle(train_data)


train_num = int(0.8 * len(train_data))

with open('train_data.jsonl', 'w') as f:
    for d in train_data[:train_num]:
        d = {
            'context':'',
            'question':d[0],
            'answer':d[1]
        }
        f.write(json.dumps(d)+'\n')
with open('val_data.jsonl', 'w') as f:
    for d in train_data[train_num:]:
        d = {
            'context':'',
            'question':d[0],
            'answer':d[1]
        }
        f.write(json.dumps(d)+'\n')

初始化

from datetime import datetime
import os
import sys

import torch

from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
)
from transformers import (AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM,
                          TrainingArguments, Trainer, DataCollatorForSeq2Seq)

# 加载自己的数据集
from datasets import load_dataset

train_dataset = load_dataset('json', data_files='train_data.jsonl', split='train')
eval_dataset 
<think>好的,我需要回答用户关于如何对LLM Factory进行微调的问题,包括方法、参数和指南。首先,我需要结合用户提供的引用内容,特别是引用[1]和[2],这些提到了LLaMa-Factory的环境搭建、微调LLaMA3,以及参数调整和权重合并等内容。 首先,我应该先确定用户的问题核心:他们想了解使用LLM Factory进行微调的具体步骤、参数设置和相关指南。根据引用内容,LLaMa-Factory是一个用于微调大型语言模型的工具,支持多种模型如LLaMA3,并且涉及环境搭建、数据集准备、参数配置等步骤。 接下来,我需要组织回答的结构。用户可能需要一个逐步的指南,所以分步骤说明会比较清晰。每个步骤需要详细说明,比如环境搭建、数据准备、参数配置、训练与评估、模型保存等。同时,用户提供的引用中提到调整参数以在小型数据集训练,因此需要强调参数调整的重要性,并给出常见参数示例。 在参数部分,需要列出关键参数如学习率、批量大小、训练轮数等,并解释它们的影响。此外,引用[2]提到合并权重并上传到Hugging Face,所以在模型保存和部署部分需要包含这些信息。 另外,用户可能需要了解如何优化微调过程,所以优化策略部分可以包括数据增强、参数调整、混合精度训练等方法。最后,生成相关问题时要围绕微调方法、参数影响、优化策略和应用场景展开,确保问题具有针对性和延伸性。 需要确保回答中提到的步骤和参数与引用内容一致,例如引用[1]中的环境搭建和微调LLaMA3,引用[2]中的参数调整和权重合并。同时,按照用户的系统级指令,使用正确的LaTeX格式,例如在提到学习率时使用$lr=1e-5$,并检查所有数学表达式的格式是否正确。 最后,回答要使用中文,结构清晰,分步骤说明,并在适当的位置添加引用标识。例如,在提到环境搭建时引用[^1],在参数调整部分引用[^2]。同时,确保生成的三个相关问题与主题相关,帮助用户进一步探索。</think>以下是关于使用LLM Factory进行大语言模型(如LLaMA3)微调的步骤、参数与指南: --- ### **一、LLM Factory微调核心步骤** 1. **环境搭建** - 安装Python依赖库(如PyTorch、Transformers、LLaMa-Factory工具包) - 配置Hugging Face模型仓库权限,获取基础模型(如Code LlamaLLaMA3)[^2] - 示例代码: ```bash pip install llama-factory datasets transformers ``` 2. **数据准备** - 使用领域特定数据集(如代码生成、问答对),格式需转换为JSON或CSV - 建议数据量:至少1k条样本,需包含输入-输出对 ```json {"instruction": "写一个Python排序函数", "input": "", "output": "def quick_sort(arr):..."} ``` 3. **参数配置** - 关键参数示例(配置文件`train_params.yaml`): ```yaml learning_rate: $1e-5$ batch_size: 8 num_train_epochs: 3 max_seq_length: 512 lora_rank: 8 # LoRA低秩适配器参数[^2] ``` 4. **训练与评估** - 启动命令: ```bash python src/train_bash.py --stage sft --model_name_or_path meta-llama/Llama-3-8b --dataset my_data --template default ``` - 监控损失函数$L = -\sum \log P(y|x;\theta)$下降趋势 5. **模型保存与部署** - 合并LoRA权重到原模型:`python src/export_model.py --merge_lora` - 上传至Hugging Face Hub或部署为API服务 --- ### **二、关键参数解析** | 参数 | 作用 | 典型值 | |------|------|-------| | `learning_rate` | 控制梯度更新步长 | $1e-5 \text{至} 5e-5$ | | `lora_rank` | LoRA矩阵的秩,影响微调参数量 | 8-64 | | `max_grad_norm` | 梯度裁剪阈值,防止梯度爆炸 | 1.0 | | `warmup_ratio` | 学习率预热比例 | 0.1 | > **提示**:在小数据集上建议启用LoRA(Low-Rank Adaptation),可减少显存占用并避免灾难性遗忘[^2] --- ### **三、优化策略** 1. **数据增强** - 对输入文本添加同义词替换、句式变换 2. **参数调整** - 使用`learning rate scheduler`(如余弦退火) - 尝试`batch_size`与GPU显存平衡(可通过梯度累积模拟更大批次) 3. **混合精度训练** - 启用`fp16`或`bf16`加速训练(需GPU支持) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

放飞自我的Coder

你的鼓励很棒棒哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值