给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:
2222 - 2222 = 0000
代码:
#include <cstdio>
#include <algorithm> //使用sort函数,使用algorithm头文件,并需要加上using namespace std;
using namespace std;
int compare(const int &a,const int &b) //调用compare函数,比较ab大小
{
return a>b;
}
int main()
{
int n;
scanf("%d",&n); //先输入d
if(n%1111==0)
{
printf("%d - %d = 0000\n",n,n); //如果输入的数字是四个相同的数字,直接输出0000
return 0;
}
else
{
int temp=n; //把n传给temp变量
while(true)
{
char c[5]={'0','0','0','0','\0'}; //定义一个字符数组用以存放输入的四个数字
int i,a,b;
for(i=3;temp!=0;i--) //对四个数字遍历,通过除商、取余,存入字符串数组
{
c[i]=(temp%10)+48; //48==OX30=='0'
temp=temp/10;
}
sort(c,c+4,compare); //调用sort函数
a=((c[0]-48)*1000 + (c[1]-48)*100 + (c[2]-48)*10 + (c[3]-48)*1); //计算a的值
printf("%s -",c);
b=((c[0]-48)*1 + (c[1]-48)*10 + (c[2]-48)*100 + (c[3]-48)*1000); //计算b的值
printf("%s =",c);
temp=a-b; //打印结果
printf("%04d\n",temp);
if(temp==6174) //直到结果显示黑洞数字6174结束。
{
break;
}
}
}
return 0;
}
结果: