给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。 你可以假设 nums1 和 nums

本文介绍了一种使用最小二分法寻找两个有序数组中位数的算法。通过计算两个数组长度的中间值,该算法能有效地找到中位数,适用于数据科学和算法优化等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本题考察最小二分法,感兴趣的可以查一下

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int n = nums1.length;
        int m = nums2.length;
        int left = (n + m + 1) / 2;
        int right = (n + m + 2) / 2;
        return (getKth(nums1, 0, n - 1, nums2, 0, m - 1, left) + getKth(nums1, 0, n - 1, nums2, 0, m - 1, right)) * 0.5;  
    }

    private int getKth(int[] nums1, int start1, int end1, int[] nums2,int start2, int end2, int k){
        int len1 = end1 - start1 + 1;
        int len2 = end2 - start2 + 1;
        if(len1 > len2) return getKth(nums2,start2,end2,nums1,start1,end1,k);
        if(len1 == 0) return nums2[start2 + k -1];
        if(k == 1) return Math.min(nums1[start1], nums2[start2]);
        int i = start1 + Math.min(len1, k/2) - 1;
        int j = start2 + Math.min(len2, k/2) - 1;
        if(nums1[i] > nums2[j]){
            return getKth(nums1,start1,end1,nums2,j+1,end2,k-(j-start2+1));
        }else{
            return getKth(nums1,i+1,end1,nums2,start2,end2,k-(i-start1+1));
        }
    }
}
### 回答1中位数是指将一个集合分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。对于给定两个正序数组,可以将它们合并成一个有序数组,然后找到这个有序数组中位数。 如果两个数组的长度之为奇数,中位数就是有序数组中间的那个元素;如果长度之为偶数,中位数就是有序数组中间两个元素的平均值。 具体实现可以使用归并排序的思想,将两个数组合并成一个有序数组,然后根据长度之的奇偶性找到中位数时间复杂度为 O(m+n)。 ### 回答2: 题目描述 给定两个大小分别为 m n 的正序(从小到大)数组 nums1 nums2找出并返回这两个正序数组的中位数。 示例 示例1: 输入: nums1 = [1,3] nums2 = [2] 输出:2 示例2: 输入: nums1 = [1,2] nums2 = [3,4] 输出:2.5 解释: 合并数组后为 [1,2,3,4],中位数(2 + 3) / 2 = 2.5 解法 由于已知nums1nums2都是正序,所以我们可以分别尝试对两个数组进行二分查找,找到两个数组的中位数对应的位置。 首先,选定两个数组中位数的位置: - 对于一个长度为n的正序数组,中位数的位置可以是n/2,也可以是(n-1)/2,因为n/2就是中位数所在的位置,但(n-1)/2n/2的结果是一样的,因为这两个位置对应的两个数的差值对中位数的影响是一样的。 - 所以对于长度为m的nums1长度为n的nums2,选定中位数的位置应该是(m+n+1)/2(m+n+2)/2两个位置。 然后,我们对nums1进行二分查找,找到一个位置i,使得: nums1[i-1] <= nums2[j] && nums2[j-1] <= nums1[i] 我们可以将这个位置i称为“分割线”,分割线左边的元素可以组成一个长度为i+j-1有序数组,右边的元素可以组成一个长度为m+n-i-j+1有序数组。 对于奇数的情况,中位数就是分割线左边的元素分割线右边的元素中较大的那个。 对于偶数的情况,中位数就是分割线左边的元素分割线右边的元素的平均数。 代码 ### 回答3: 首先,我们需要了解中位数的定义。中位数是一组数据中居于中间位置的数,即把一组数从小到大或从大到小排序后,位于中间位置(如果有偶数个数,则取中间两个数的平均值)的数字。因此,要求解这两个正序数组的中位数,我们需要先将它们合并成一个有序数组,然后找出中间位置的数或两个数的平均值。 合并两个有序数组的方法有很多种,这里介绍一种比较简单的方法:使用双指针法,分别指向两个数组的起始位置,逐个比较两个指针所指的数,将较小的数存入一个新数组中,并将指针后移,直到任意一个数组的数被取完,再将剩余的数组中的数依次存入新数组中。最终得到的新数组就是合并后的有序数组。 接下来,我们需要确定中位数的位置。假设两个有序数组的长度分别为 m n,那么它们的中位数要么是第 (m+n)/2 个数,要么是第 (m+n)/2 (m+n)/2+1 个数的平均值(当 m+n 为偶数时)。 因此,我们可以使用双指针法,同时遍历两个有序数组,记录已经遍历的数的个数,当遍历到第 (m+n)/2(m+n)/2+1 个数时,就可以得到中位数。 下面是使用双指针法求解两个有序数组中位数的 Python 代码实现: ```python class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: m, n = len(nums1), len(nums2) nums = [] i, j = 0, 0 while i < m and j < n: if nums1[i] < nums2[j]: nums.append(nums1[i]) i += 1 else: nums.append(nums2[j]) j += 1 nums += nums1[i:] nums += nums2[j:] k = (m + n) // 2 if (m + n) % 2 == 0: return (nums[k-1] + nums[k]) / 2 else: return nums[k] ``` 该算法时间复杂度为 O(m+n),空间复杂度为 O(m+n)。需要注意的是,由于 Python 中整数除法运算会向下取整,因此计算中位数位置时需要使用 (m+n)//2 (m+n)//2+1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值