数据平滑

数据平滑是语言模型的关键,包括加法平滑、古德-图灵估计法、Katz平滑、Jelinek-Mercer平滑、Witten-Bell平滑、绝对减值法、Kneser-Ney平滑和Church-Gale平滑等多种方法。这些技术通过处理二元语法的频率,改善模型的预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
对于二元语法来说,一种最简单的平滑技术就是假设每个二元语法出现的次数比实际出现的次数多一次,不妨将该处理方法称为加1法。
数据平滑是语言模型中的核心问题,多年来很多学者在这方面做了大量的研究工作。下面简要介绍一些主要的数据平滑方法。

加法平滑方法

在这里插入图片描述
在这里插入图片描述

古德-图灵(Good-Turing)估计法

在这里插入图片描述

Katz平滑方法

Jelinek-Mercer平滑方法

在这里插入图片描述

Witten-Bell平滑方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值