浙大胡教授ML课学习记录_2.1_SVM_线性可分

本文探讨了SVM在处理线性可分数据时如何通过间隔最大化来选择最优分类超平面。讲解了支持向量的概念、数学定义以及优化问题的设置,重点在于理解SVM为何最小化权重平方并约束于间隔边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SVM线性可分情况

1. 线性可分

存在一条直线可以将 OX 分开
在这里插入图片描述
存在一个平面可以将 OX 分开
在这里插入图片描述
如果一个数据集是线性可分的,那么存在无穷多个超平面将各个类别分开。(有个证明,我不会)

2. 解决线性可分问题

在这里插入图片描述
问:哪一条最好?
答:大部分人都会认为是 2 号线比较好。其实是在假设的基础上,就是假设训练样本的位置在特征空间上有测量误差。2 号线更能抵抗训练样本位置的误差。

问:2 号线怎么画?
答:Vapnik 给出了一个基于最优化理论的答案。
假设对于任意一条分开两类的直线,将该直线朝一侧平行移动,直到插入到一个或者多个训练样本为止,同理朝另一侧平行移动。这两条平行线插入的训练样本称为这个数据集的支持向量,两条平行线之间的距离称为间隔,2 号线就是间隔最大的那条线。
在这里插入图片描述
SVM 寻找的最优分类直线应该满足:

  1. 该支线分开了两类
  2. 该直线最大化间隔(margin)
  3. 该直线处于间隔的中间,到 所有支持向量距离相等

3. 优化问题

3.1 线性可分数学定义

一个训练样本集 {(xi,yi)},i=1~N\{(x_i, y_i)\},i=1~N{(xi,yi)},i=1N 线性可分,是指存在 (ω,b)(\omega, b)(ω,b) 使:
①当yi=+1时,ωTxi+b≥0②当yi=−1时,ωTxi+b<0综合①②得:yi[ωTxi+b]≥0(公式1)\begin{aligned} &① 当 y_i = +1 时, \omega^Tx_i+b \ge 0 \\ &② 当 y_i = -1 时, \omega^Tx_i+b \lt 0 \\ &综合①②得: \\ &y_i[\omega^Tx_i+b]\ge0 (公式1) \end{aligned}yi=+1,ωTxi+b0yi=1,ωTxi+b<0:yi[ωTxi+b]0(1)
其中,xix_ixi 为向量,yiy_iyi 为标签

3.2 SVM 优化问题

最小化:
12∣∣ω∣∣2\frac{1}{2}||\omega||^221ω2
限制条件:
yi[ωTxi+b]≥1(公式2)y_i[\omega^Tx_i+b]\ge1 (公式2)yi[ωTxi+b]1(2)

问:为什么这样写?
首先说明两个事实

  1. ωTx+b=0\omega^Tx+b=0ωTx+b=0aωTx+ab=0a\omega^Tx+ab=0aωTx+ab=0 是同一个平面或同一条线,例如a(kx+b)=0a(kx+b)=0a(kx+b)=0kx+b=0kx+b=0kx+b=0 是同一条线,其中 a∈R+a∈R^+aR+
  2. 点(支持向量) X0X_0X0 到直线或者点到平面距离公式为
    d=∣ωTX0+b∣∣∣ω∣∣d = \frac{|\omega^TX_0 + b|}{||\omega||}d=ωωTX0+b

答:我们可以用 aaa 去缩放 (ω,b)→(aω,ab)(\omega, b) \to (a\omega, ab)(ω,b)(aω,ab)
最终使在支持向量X0X_0X0上有:∣ωTX0+b∣=1|\omega^TX_0 + b| = 1ωTX0+b=1
此时支持向量与平面距离 d=1∣∣ω∣∣d = \frac {1}{||\omega||}d=ω1
margin 也就是二倍的 ddd,我们的目的是为了最大化 margin,等价于最小化 ∣∣ω∣∣||\omega||ω,为什么写的时候加上了平方还乘一个12\frac{1}{2}21,那是为了方便求导进而方便求解。

问:公式 2 中的大于等于 1 可不可以写成 2 或者其他正数
答:可以,改成其他正数求得的 (ω′,b′)(\omega', b')(ω,b) 和为 1 时求得的 (ω,b)(\omega, b)(ω,b) 结果相差的倍数是一个常数 aaa

SVM 优化问题也是凸优化问题中的二次规划问题,这个在最优化理论中有证明,这里只说结论:
如果:

  1. 目标函数为二次项
  2. 限制条件为一次项

那么,求解只有两种情况:

  1. 无解
  2. 只有一个极值
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哇咔咔负负得正

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值