浙大胡教授ML课学习记录_2.3_SVM_引入核函数

本文介绍了核函数在支持向量机中的作用,通过核技巧避免显式计算高维特征映射,探讨了Mercer's定理与核函数形式的选择,并举例说明了核函数与向量映射的关系。后续章节将聚焦于使用核函数解决SVM优化问题的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核函数

1. 内容回顾

上一节讲到引入了低维向高维映射 φ(x)\varphi(x)φ(x) 后的优化问题
最小化:
12∣∣ω∣∣2+C∑i=1nδi或12∣∣ω∣∣2+C∑i=1nδi2\begin{aligned} & \frac{1}{2}||\omega||^2+C\sum^{n}_{i=1}\delta_i \\或\\ & \frac{1}{2}||\omega||^2+C\sum^{n}_{i=1}\delta_i^2 \end{aligned}21ω2+Ci=1nδi21ω2+Ci=1nδi2
限制条件:
(1)δi≥0(2)yi[ωTφ(xi)+b]≥1−δi\begin{aligned} &(1)\delta_i\ge0\\ &(2)y_i[\omega^T\varphi(x_i)+b]\ge1-\delta_i \end{aligned}(1)δi0(2)yi[ωTφ(xi)+b]1δi

这一节来研究 φ(xi)\varphi(x_i)φ(xi) 的形式

2. 引入核函数

Vapnik 提到不用知道 φ(x)\varphi(x)φ(x) 的具体形式,只要知道一个核函数K(x1,x2)K(x_1,x_2)K(x1,x2)
K(x1,x2)=φ(x1)Tφ(x2) K(x_1,x_2) = \varphi(x_1)^T\varphi(x_2) K(x1,x2)=φ(x1)Tφ(x2)
使得优化问题一样可解。

K(x1,x2)K(x_1, x_2)K(x1,x2) 的结果将是一个数。

下面两个例子来说明核函数以及低维到高维的映射 φ(x)\varphi(x)φ(x) 的关系。

2.1 例子

eg1 已知 φ\varphiφKKK

假设:
φ(x)\varphi(x)φ(x) 是一个将二维向量映射为三维向量的映射
在这里插入图片描述
假设有两个二维向量 x1,x2x_1,x_2x1,x2
在这里插入图片描述
那么分别对应的映射φ(x1),φ(x2)\varphi(x_1), \varphi(x_2)φ(x1),φ(x2)
在这里插入图片描述
核函数 K(x1,x2)K(x_1,x_2)K(x1,x2)
在这里插入图片描述

eg2 已知 KKKφ\varphiφ

假设 KKKφ\varphiφ 关系为
在这里插入图片描述
xix_ixi 为二维向量

则根据观察,映射 φ(x)\varphi(x)φ(x)
在这里插入图片描述

eg 小结
  1. 核函数和映射是一一对应的关系
  2. 核函数的形式不能随意的取,必须满足一定条件才能分成两个 φ\varphiφ 内积的形式

2.2 Mercer’s 定理

K(x1,x2)K(x_1,x_2)K(x1,x2) 能写成 φ(x1)Tφ(x2)\varphi(x_1)^T\varphi(x_2)φ(x1)Tφ(x2) 的充要条件:
在这里插入图片描述
其中 CiC_iCi 为任意实数

例如,可以证明
高斯核函数,满足 Mercer’s 定理
在这里插入图片描述
K(x1,x2)K(x_1,x_2)K(x1,x2) 可以被写成 φ(x1)Tφ(x2)\varphi(x_1)^T\varphi(x_2)φ(x1)Tφ(x2) 的形式(目前还不会证明,回头试试

3. 总结

这节讲了虽然不知道映射 φ\varphiφ 的形式,但是可以通过核函数来得到 ωTφ(x)+b\omega^T\varphi(x)+bωTφ(x)+b 的值,进而直到样本所属类别。(下一节具体研究已知 KKK 不知 φ\varphiφ 求解 SVM 的优化问题,下一节对偶定理把我搞懵了,埋个坑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哇咔咔负负得正

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值