核函数
1. 内容回顾
上一节讲到引入了低维向高维映射 φ(x)\varphi(x)φ(x) 后的优化问题
最小化:
12∣∣ω∣∣2+C∑i=1nδi或12∣∣ω∣∣2+C∑i=1nδi2\begin{aligned}
& \frac{1}{2}||\omega||^2+C\sum^{n}_{i=1}\delta_i \\或\\
& \frac{1}{2}||\omega||^2+C\sum^{n}_{i=1}\delta_i^2
\end{aligned}或21∣∣ω∣∣2+Ci=1∑nδi21∣∣ω∣∣2+Ci=1∑nδi2
限制条件:
(1)δi≥0(2)yi[ωTφ(xi)+b]≥1−δi\begin{aligned}
&(1)\delta_i\ge0\\
&(2)y_i[\omega^T\varphi(x_i)+b]\ge1-\delta_i
\end{aligned}(1)δi≥0(2)yi[ωTφ(xi)+b]≥1−δi
这一节来研究 φ(xi)\varphi(x_i)φ(xi) 的形式
2. 引入核函数
Vapnik 提到不用知道 φ(x)\varphi(x)φ(x) 的具体形式,只要知道一个核函数K(x1,x2)K(x_1,x_2)K(x1,x2)
K(x1,x2)=φ(x1)Tφ(x2)
K(x_1,x_2) = \varphi(x_1)^T\varphi(x_2)
K(x1,x2)=φ(x1)Tφ(x2)
使得优化问题一样可解。
K(x1,x2)K(x_1, x_2)K(x1,x2) 的结果将是一个数。
下面两个例子来说明核函数以及低维到高维的映射 φ(x)\varphi(x)φ(x) 的关系。
2.1 例子
eg1 已知 φ\varphiφ 求 KKK
假设:
φ(x)\varphi(x)φ(x) 是一个将二维向量映射为三维向量的映射
假设有两个二维向量 x1,x2x_1,x_2x1,x2
那么分别对应的映射φ(x1),φ(x2)\varphi(x_1), \varphi(x_2)φ(x1),φ(x2)为
核函数 K(x1,x2)K(x_1,x_2)K(x1,x2) 为
eg2 已知 KKK 求 φ\varphiφ
假设 KKK 与 φ\varphiφ 关系为
且 xix_ixi 为二维向量
则根据观察,映射 φ(x)\varphi(x)φ(x) 为
eg 小结
- 核函数和映射是一一对应的关系
- 核函数的形式不能随意的取,必须满足一定条件才能分成两个 φ\varphiφ 内积的形式
2.2 Mercer’s 定理
K(x1,x2)K(x_1,x_2)K(x1,x2) 能写成 φ(x1)Tφ(x2)\varphi(x_1)^T\varphi(x_2)φ(x1)Tφ(x2) 的充要条件:
其中 CiC_iCi 为任意实数
例如,可以证明
高斯核函数,满足 Mercer’s 定理
K(x1,x2)K(x_1,x_2)K(x1,x2) 可以被写成 φ(x1)Tφ(x2)\varphi(x_1)^T\varphi(x_2)φ(x1)Tφ(x2) 的形式(目前还不会证明,回头试试)
3. 总结
这节讲了虽然不知道映射 φ\varphiφ 的形式,但是可以通过核函数来得到 ωTφ(x)+b\omega^T\varphi(x)+bωTφ(x)+b 的值,进而直到样本所属类别。(下一节具体研究已知 KKK 不知 φ\varphiφ 求解 SVM 的优化问题,下一节对偶定理把我搞懵了,埋个坑)