力扣刷题记录 (一)数组

本文详细介绍了使用二分查找法解决数组查找问题,包括寻找目标值的下标、搜索插入位置、查找元素范围以及平方根计算。此外,还探讨了如何在数组中高效移除元素,如移除指定值、删除重复项和移动零。最后,展示了滑动窗口在解决连续子数组和水果成篮问题中的应用,以及数组循环中的螺旋矩阵生成。这些算法均以O(logn)或O(n)的时间复杂度实现了高效解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解题思路来自 https://github.com/youngyangyang04/leetcode-master

1. 二分查找

①  题号704. 二分查找

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1: 输入: nums = [-1,0,3,5,9,12], target = 9 输出: 4 解释: 9 出现在 nums 中并且下标为 4

示例 2: 输入: nums = [-1,0,3,5,9,12], target = 2 输出: -1 解释: 2 不存在 nums 中因此返回 -1

提示:

  • 你可以假设 nums 中的所有元素是不重复的。
  • n 将在 [1, 10000]之间。
  • nums 的每个元素都将在 [-9999, 9999]之间。

解析:

这道题目的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件,当大家看到题目描述满足如上条件的时候,可要想一想是不是可以用二分法了。

二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。

答:

解法一

注:14行改为 int middle = left + (right - left) / 2 以防止溢出。

解法二

注:12行改为 int middle = left + (right - left) / 2 以防止溢出。

②  题号35.搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

你可以假设数组中无重复元素。

示例 1:
输入: [1,3,5,6], 5
输出: 2

示例 2:
输入: [1,3,5,6], 2
输出: 1

示例 3:
输入: [1,3,5,6], 7
输出: 4

示例 4:
输入: [1,3,5,6], 0
输出: 0

解析:用二分法

答:

解法一

时间复杂度:O(logn)
空间复杂度:O(1)

注:12行改为 int middle = left + (right - left) / 2 以防止溢出。

解法二

时间复杂度:O(logn)
空间复杂度:O(1)

注:12行改为 int middle = left + (right - left) / 2 以防止溢出。

③ 题号34.在排序数组中查找元素的第一个和最后一个位置

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
进阶:
你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?

示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
解析:有序数组查找一个数,可以用二分解决

答:

解法一

时间复杂度:O(logn)
空间复杂度:O(1)

注:24、52行改为 int middle = left + (right - left) / 2 以防止溢出。

解法二

时间复杂度:O(logn)
空间复杂度:O(1)

注:24、52行改为 int middle = left + (right - left) / 2 以防止溢出。

④ 题号69. x 的平方根

求一个非负整数的平方根,不要求近似解,只需要整数部分。

解析:

(1)二分法

由于本题只需求 n 的平方根的整数部分即可,所以平方根一定是 0,1,2,3 … n 中的一个数。从一个有序序列中找一个数,像极了二分查找。先取中点 mid,然后判断 mid * mid 是否等于 n,小于 n 的话取左半部分,大于 n 的话取右半部分,等于 n 的话 mid 就是我们要找的了。

(2)牛顿迭代法介绍 https://www.jianshu.com/p/423bdb8c53a8

答:

解法一        二分法

不完善的解法

完善的解法如下:

注:通过把第12行的int类型改为long类型,即 long square = mid * mid , 也可防止溢出。

解法二        牛顿迭代法

⑤ 题号367. 有效的完全平方数

给定一个正整数 num,编写一个函数,如果 num 是一个完全平方数,则返回 True,否则返回 False。
说明:不要使用任何内置的库函数,如 sqrt。
示例 1:
输入:16
输出:True
示例 2:
输入:14
输出:False

答:

解法一

解法二    二分法

2. 数组移除元素

① 题号27. 移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。

示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。

答:

解法一   双循环暴力解法

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

解法二     双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

② 题号26. 删除排序数组中的重复项

给定一个排序数组,你需要在 原地 删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。
不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。

示例 1:
给定数组 nums = [1,1,2],
函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。
你不需要考虑数组中超出新长度后面的元素。

示例 2:
给定 nums = [0,0,1,1,1,2,2,3,3,4],
函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。
你不需要考虑数组中超出新长度后面的元素。

解析:双指针法

答:

③ 题号283.移动零

给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。

例:

输入: [0,1,0,3,12]
输出: [1,3,12,0,0]

解析:双指针法

答:

④ 题号977. 有序数组的平方

给定一个按非递减顺序排序的整数数组 A,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。

示例 1:

输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:

输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]

解析:双指针法。

充分利用题目条件,平方大的肯定在首尾两边。所以定义两个指针,分别指向头和尾,将两个指针指向的元素大的存放到新的数组中,然后让该指针向中间移动,再比较两个指针指向元素的平方的大小,直到遍历所有的元素。
答:

3. 数组滑动窗口

① 题号209.长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

示例:

输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。

答:

解法一  双循环暴力解法

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

解法二   滑动窗口

所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果

滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)的暴力解法降为O(n)。

  • 时间复杂度:O(n)      
  • 注:不要以为for里放一个while就以为是O(n^2), 主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被被操作两次,所以时间复杂度是2 * n 也就是O(n)。
  • 空间复杂度:O(1)

② 题号904.水果成篮

在一排树中,第 i 棵树产生 tree[i] 型的水果。
你可以从你选择的任何树开始,然后重复执行以下步骤:

  • 把这棵树上的水果放进你的篮子里。如果你做不到,就停下来。
  • 移动到当前树右侧的下一棵树。如果右边没有树,就停下来。

请注意,在选择一颗树后,你没有任何选择:你必须执行步骤 1,然后执行步骤 2,然后返回步骤 1,然后执行步骤 2,依此类推,直至停止。

你有两个篮子,每个篮子可以携带任何数量的水果,但你希望每个篮子只携带一种类型的水果。
用这个程序你能收集的水果总量是多少?

示例 1:
输入:[1,2,1]
输出:3
解释:我们可以收集 [1,2,1]。

示例 2:
输入:[0,1,2,2]
输出:3
解释:我们可以收集 [1,2,2].
如果我们从第一棵树开始,我们将只能收集到 [0, 1]。

示例 3:
输入:[1,2,3,2,2]
输出:4
解释:我们可以收集 [2,3,2,2].
如果我们从第一棵树开始,我们将只能收集到 [1, 2]。

示例 4:
输入:[3,3,3,1,2,1,1,2,3,3,4]
输出:5
解释:我们可以收集 [1,2,1,1,2].
如果我们从第一棵树或第八棵树开始,我们将只能收集到 4 个水果。
 
提示:
1 <= tree.length <= 40000
0 <= tree[i] < tree.length

解析:

  • 滑动窗口,窗口内的水果种类数最多2种
  • 窗口右端点一直向右扩大,左端点在水果种类 > 2种时,向右移动

答:

③ 题号76.最小覆盖子串

给定一个字符串 S 和一个字符串 T,请在 S 中找出包含 T 所有字母的最小子串。

示例:

输入: S = "ADOBECODEBANC", T = "ABC"
输出: "BANC"

说明:

  • 如果 S 中不存这样的子串,则返回空字符串 ""
  • 如果 S 中存在这样的子串,我们保证它是唯一的答案。

解析:滑动窗口

答:

4. 数组循环

① 题号59.螺旋矩阵 II

给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。

示例:

输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]

解析:

模拟顺时针画矩阵的过程:

  • 填充上行从左到右
  • 填充右列从上到下
  • 填充下行从右到左
  • 填充左列从下到上

由外向内一圈一圈这么画下去。

这里一圈下来,我们要画每四条边,这四条边怎么画,每画一条边都要坚持一致的左闭右开,或者左开又闭的原则,这样这一圈才能按照统一的规则画下来。

答:

② 题号54.螺旋矩阵

给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。

示例 1:

输入:
[
 [ 1, 2, 3 ],
 [ 4, 5, 6 ],
 [ 7, 8, 9 ]
]
输出: [1,2,3,6,9,8,7,4,5]
示例 2:

输入:
[
  [1, 2, 3, 4],
  [5, 6, 7, 8],
  [9,10,11,12]
]
输出: [1,2,3,4,8,12,11,10,9,5,6,7]


解析: 按照输出的顺序进行遍历即可

答:

③ 题号 剑指Offer-29. 顺时针打印矩阵

输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下矩阵:

则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.

答:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值