伯努利分布和二项分布

文章介绍了伯努利分布,它是只有两种可能结果(成功/失败)的随机事件的概率模型,成功概率为p,失败概率为1-p。接着讨论了二项分布,它描述了在n次独立的伯努利试验中成功发生k次的概率,成功概率为p。同时,给出了伯努利分布和二项分布的期望与方差的计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0-1分布/伯努利分布

Bernoulli distribution

只先进行一次事件试验,该事件发生的概率为ppp,不发生的概率为1−p1-p1p
P(X=k)=pk(1−p)1−k,k=0,1 P\left(X = k\right)= p^k \left(1-p\right)^{1-k},\quad k=0,1 P(X=k)=pk(1p)1k,k=0,1
期望
E[X]=p E\left[X\right] = p E[X]=p
方差
D[X]=p−p2=p(1−p) D\left[X\right] = p - p^2 = p\left(1-p\right) D[X]=pp2=p(1p)

二项分布

二项分布是nnn个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为ppp
记作X∼B(n,p)X \sim B\left(n,p\right)XB(n,p)
P(X=k)=Cnkpkqn−k,k=0,1,2⋯ ,n P\left(X= k\right) = C_n^k p^k q^{n-k},\quad k=0,1,2\cdots,n P(X=k)=Cnkpkqnk,k=0,1,2,n
期望
E[X]=np E\left[X\right] = np E[X]=np
推导
E[X]=∑k=0nkn!k!(n−k)!pkqn−k=∑k=1nn!(k−1)!(n−k)!pkqn−k=np∑k=1n(n−1)!(k−1)!(n−k)!pk−1qn−k=np∑k=0n−1(n−1)!k!(n−k−1)!pkqn−1−k=np(p+q)n−1=np \begin{aligned} E\left[X\right] &=\sum_{k=0}^n k \frac{n!}{k!\left(n-k\right)!}p^k q^{n-k}\\ &=\sum_{k=1}^n \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\\ &=np\sum_{k=1}^n \frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k\right)!}p^{k-1} q^{n-k}\\ &=np\sum_{k=0}^{n-1} \frac{\left(n-1\right)!}{k!\left(n-k-1\right)!}p^{k} q^{n-1-k}\\ &=np\left(p + q\right)^{n-1}\\ &=np \end{aligned} E[X]=k=0nkk!(nk)!n!pkqnk=k=1n(k1)!(nk)!n!pkqnk=npk=1n(k1)!(nk)!(n1)!pk1qnk=npk=0n1k!(nk1)!(n1)!pkqn1k=np(p+q)n1=np
方差
D[X]=npq D\left[X\right]=npq D[X]=npq
推导
E[X2]=∑k=0nk2n!k!(n−k)!pkqn−k=∑k=1nkn!(k−1)!(n−k)!pkqn−k=(∑k=2nn!(k−2)!(n−k)!pkqn−k)+(∑k=1nn!(k−1)!(n−k)!pkqn−k)=n(n−1)p2(∑k=2n(n−2)!(k−2)!(n−k)!pk−2qn−k)+np(∑k=1n(n−1)!(k−1)!(n−k)!pk−1qn−k)=n(n−1)p2(∑k=0n−2(n−2)!k!(n−k−2)!pkqn−2−k)+np(∑k=0n−1(n−1)!k!(n−k−1)!pkqn−1−k)=n(n−1)p2+np=n2p2+npq \begin{aligned} E\left[X^2\right] &=\sum_{k=0}^n k^2 \frac{n!}{k!\left(n-k\right)!}p^k q^{n-k}\\ &=\sum_{k=1}^n k \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\\ &=\left(\sum_{k=2}^n \frac{n!}{\left(k-2\right)!\left(n-k\right)!}p^k q^{n-k}\right)+\left(\sum_{k=1}^n \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\right)\\ &=n\left(n-1\right)p^2\left(\sum_{k=2}^n \frac{\left(n-2\right)!}{\left(k-2\right)!\left(n-k\right)!}p^{k-2} q^{n-k}\right)+np\left(\sum_{k=1}^n \frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k\right)!}p^{k-1} q^{n-k}\right)\\ &=n\left(n-1\right)p^2\left(\sum_{k=0}^{n-2} \frac{\left(n-2\right)!}{k!\left(n-k-2\right)!}p^{k} q^{n-2-k}\right)+np\left(\sum_{k=0}^{n-1} \frac{\left(n-1\right)!}{k!\left(n-k-1\right)!}p^{k} q^{n-1-k}\right)\\ &=n\left(n-1\right)p^2 + np\\ &=n^2p^2 + npq \end{aligned} E[X2]=k=0nk2k!(nk)!n!pkqnk=k=1nk(k1)!(nk)!n!pkqnk=(k=2n(k2)!(nk)!n!pkqnk)+(k=1n(k1)!(nk)!n!pkqnk)=n(n1)p2(k=2n(k2)!(nk)!(n2)!pk2qnk)+np(k=1n(k1)!(nk)!(n1)!pk1qnk)=n(n1)p2(k=0n2k!(nk2)!(n2)!pkqn2k)+np(k=0n1k!(nk1)!(n1)!pkqn1k)=n(n1)p2+np=n2p2+npq
因此
D[X]=n2p2+npq−n2p2=npq D\left[X\right] = n^2p^2 + npq - n^2p^2 = npq D[X]=n2p2+npqn2p2=npq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值