0-1分布/伯努利分布
Bernoulli distribution
只先进行一次事件试验,该事件发生的概率为ppp,不发生的概率为1−p1-p1−p
P(X=k)=pk(1−p)1−k,k=0,1
P\left(X = k\right)= p^k \left(1-p\right)^{1-k},\quad k=0,1
P(X=k)=pk(1−p)1−k,k=0,1
期望
E[X]=p
E\left[X\right] = p
E[X]=p
方差
D[X]=p−p2=p(1−p)
D\left[X\right] = p - p^2 = p\left(1-p\right)
D[X]=p−p2=p(1−p)
二项分布
二项分布是nnn个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为ppp
记作X∼B(n,p)X \sim B\left(n,p\right)X∼B(n,p)
P(X=k)=Cnkpkqn−k,k=0,1,2⋯ ,n
P\left(X= k\right) = C_n^k p^k q^{n-k},\quad k=0,1,2\cdots,n
P(X=k)=Cnkpkqn−k,k=0,1,2⋯,n
期望
E[X]=np
E\left[X\right] = np
E[X]=np
推导
E[X]=∑k=0nkn!k!(n−k)!pkqn−k=∑k=1nn!(k−1)!(n−k)!pkqn−k=np∑k=1n(n−1)!(k−1)!(n−k)!pk−1qn−k=np∑k=0n−1(n−1)!k!(n−k−1)!pkqn−1−k=np(p+q)n−1=np
\begin{aligned}
E\left[X\right] &=\sum_{k=0}^n k \frac{n!}{k!\left(n-k\right)!}p^k q^{n-k}\\
&=\sum_{k=1}^n \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\\
&=np\sum_{k=1}^n \frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k\right)!}p^{k-1} q^{n-k}\\
&=np\sum_{k=0}^{n-1} \frac{\left(n-1\right)!}{k!\left(n-k-1\right)!}p^{k} q^{n-1-k}\\
&=np\left(p + q\right)^{n-1}\\
&=np
\end{aligned}
E[X]=k=0∑nkk!(n−k)!n!pkqn−k=k=1∑n(k−1)!(n−k)!n!pkqn−k=npk=1∑n(k−1)!(n−k)!(n−1)!pk−1qn−k=npk=0∑n−1k!(n−k−1)!(n−1)!pkqn−1−k=np(p+q)n−1=np
方差
D[X]=npq
D\left[X\right]=npq
D[X]=npq
推导
E[X2]=∑k=0nk2n!k!(n−k)!pkqn−k=∑k=1nkn!(k−1)!(n−k)!pkqn−k=(∑k=2nn!(k−2)!(n−k)!pkqn−k)+(∑k=1nn!(k−1)!(n−k)!pkqn−k)=n(n−1)p2(∑k=2n(n−2)!(k−2)!(n−k)!pk−2qn−k)+np(∑k=1n(n−1)!(k−1)!(n−k)!pk−1qn−k)=n(n−1)p2(∑k=0n−2(n−2)!k!(n−k−2)!pkqn−2−k)+np(∑k=0n−1(n−1)!k!(n−k−1)!pkqn−1−k)=n(n−1)p2+np=n2p2+npq
\begin{aligned}
E\left[X^2\right] &=\sum_{k=0}^n k^2 \frac{n!}{k!\left(n-k\right)!}p^k q^{n-k}\\
&=\sum_{k=1}^n k \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\\
&=\left(\sum_{k=2}^n \frac{n!}{\left(k-2\right)!\left(n-k\right)!}p^k q^{n-k}\right)+\left(\sum_{k=1}^n \frac{n!}{\left(k-1\right)!\left(n-k\right)!}p^k q^{n-k}\right)\\
&=n\left(n-1\right)p^2\left(\sum_{k=2}^n \frac{\left(n-2\right)!}{\left(k-2\right)!\left(n-k\right)!}p^{k-2} q^{n-k}\right)+np\left(\sum_{k=1}^n \frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k\right)!}p^{k-1} q^{n-k}\right)\\
&=n\left(n-1\right)p^2\left(\sum_{k=0}^{n-2} \frac{\left(n-2\right)!}{k!\left(n-k-2\right)!}p^{k} q^{n-2-k}\right)+np\left(\sum_{k=0}^{n-1} \frac{\left(n-1\right)!}{k!\left(n-k-1\right)!}p^{k} q^{n-1-k}\right)\\
&=n\left(n-1\right)p^2 + np\\
&=n^2p^2 + npq
\end{aligned}
E[X2]=k=0∑nk2k!(n−k)!n!pkqn−k=k=1∑nk(k−1)!(n−k)!n!pkqn−k=(k=2∑n(k−2)!(n−k)!n!pkqn−k)+(k=1∑n(k−1)!(n−k)!n!pkqn−k)=n(n−1)p2(k=2∑n(k−2)!(n−k)!(n−2)!pk−2qn−k)+np(k=1∑n(k−1)!(n−k)!(n−1)!pk−1qn−k)=n(n−1)p2(k=0∑n−2k!(n−k−2)!(n−2)!pkqn−2−k)+np(k=0∑n−1k!(n−k−1)!(n−1)!pkqn−1−k)=n(n−1)p2+np=n2p2+npq
因此
D[X]=n2p2+npq−n2p2=npq
D\left[X\right] = n^2p^2 + npq - n^2p^2 = npq
D[X]=n2p2+npq−n2p2=npq