有限集和无限集
后继集
设SSS是任一集合,称S+=S∪{S}S^+ = S\cup \left\{ S\right\}S+=S∪{S}为SSS的后继集
自然数集
自然数集N\mathbb{N}N的归纳定义是:
(1)∅∈N\empty \in \mathbb{N}∅∈N
(2)若n∈Nn\in \mathbb{N}n∈N,则n+∈Nn^+ \in \mathbb{N}n+∈N
(3)若S∈NS\in \mathbb{N}S∈N,且满足
1.∅∈S\empty \in S∅∈S;
2. 若n∈Sn \in Sn∈S,则n+∈Sn^+\in Sn+∈S;
则S=NS=\mathbb{N}S=N
我们约定,依次记
0=∅1=0+=∅+={∅}2=1+={∅}+={∅,{∅}}3=2+={∅,{∅}}+={∅,{∅},{∅,{∅}}}⋯
\begin{aligned}
0 &= \empty\\
1 &= 0^+ = \empty^+ = \left\{\empty \right\}\\
2 &= 1^+ = \left\{\empty \right\}^+ = \left\{ \empty, \left\{\empty \right\}\right\}\\
3 &= 2^+ = \left\{ \empty, \left\{\empty \right\}\right\}^+=\left\{\empty, \left\{\empty \right\},\left\{ \empty, \left\{\empty \right\}\right\}\right\}\\
&\cdots
\end{aligned}
0123=∅=0+=∅+={∅}=1+={∅}+={∅,{∅}}=2+={∅,{∅}}+={∅,{∅},{∅,{∅}}}⋯
由定义,每个自然数nnn,都有n∈n+n\in n^+n∈n+和n⊆n+n \subseteq n^+n⊆n+,利用这一性质可在N\mathbb{N}N上引进大小次序关系
若m,n∈Nm,n \in\mathbb{N}m,n∈N使m∈nm\in nm∈n则称mmm小于nnn(或nnn大于mmm),记为m<nm<nm<n(或n>mn > mn>m)
我们将N\mathbb{N}N的前nnn个自然数的集合记为Nn={0,1,2,⋯ ,n−1}\mathbb{N}_n = \left\{0, 1, 2,\cdots, n -1\right\}Nn={0,1,2,⋯,n−1}
设AAA和BBB使任意集合,若存在从AAA到BBB的双射,则称AAA与BBB是等势的,记为A∼BA\sim BA∼B;
若AAA与BBB不等势,则记为A≁BA\not\sim BA∼B
例子:N∼I\mathbb{N} \sim \mathbb{I}N∼I
作f:N→If:\mathbb{N} \to \mathbb{I}f:N→I,
f(x)={−x+12,x is oddx2,otherwise
f\left(x\right) = \begin{cases}
-\frac{x + 1}{2}, & \text{x is odd}\\
\frac{x}{2}, & otherwise
\end{cases}
f(x)={−2x+1,2x,x is oddotherwise
容易验证fff双射
若有n∈Nn\in \mathbb{N}n∈N,使得Nn∼A\mathbb{N}_n\sim ANn∼A,则称AAA是有限集,且称其基数为nnn,记为∣A∣=n\left|A\right|=n∣A∣=n;
若AAA不是有限集,则称AAA是无限集
例子: 自然数是无限集合
证明:假设N\mathbb{N}N是有限集,则有n∈Nn\in\mathbb{N}n∈N,使得存在双射
f:Nn→N
f:\mathbb{N}_n\to \mathbb{N}
f:Nn→N
取k=max{f(i)∣i∈Nn}+1k = \max\left\{f\left(i\right)|i \in \mathbb{N}_n\right\} + 1k=max{f(i)∣i∈Nn}+1
则k∈Nk\in\mathbb{N}k∈N,并且不存在x∈Nnx\in\mathbb{N}_nx∈Nn,使得f(x)=kf\left(x\right) = kf(x)=k,即fff不是满射的,矛盾
定理1: 任何有限集都不能与它的真子集等势
定理2:
设AAA是有限集,BBB是无限集,CCC是任意集合
(1)若C⊆AC\subseteq AC⊆A,则CCC是有限集
(2)若B⊆CB\subseteq CB⊆C,则CCC是无限集合
可数集与不可数集
设AAA是任意集合。若N∼A\mathbb{N}\sim AN∼A,则称AAA是可数无限集,并称AAA的基数为ℵ0\aleph_0ℵ0(阿列夫零),记为∣A∣=ℵ0\left|A\right| = \aleph_0∣A∣=ℵ0
有限集和可数无限集称为可数集或可列集;非可数的集合称为不可数集
若AAA是可数集,则存在双射f:Nn→Af: \mathbf{N}_n\to Af:Nn→A或者f:N→Af:\mathbf{N}\to Af:N→A,因此AAA中的元素可无重复排列为f(0),f(1),⋯ ,f(n−1)f\left(0\right), f\left(1\right),\cdots, f\left(n-1\right)f(0),f(1),⋯,f(n−1)或者f(0),f(1),f(2),⋯f\left(0\right),f\left(1\right), f\left(2\right),\cdotsf(0),f(1),f(2),⋯,反之,若AAA中的元素能无重复地排列称a0,a1,⋯ ,an−1a_0, a_1,\cdots, a_{n-1}a0,a1,⋯,an−1或者a0,a1,a2,⋯a_0,a_1,a_2,\cdotsa0,a1,a2,⋯,则存在双射
f:Nn→A,f(i)=ai
f:\mathbb{N}_n\to A,\quad f\left(i\right) = a_i
f:Nn→A,f(i)=ai
或者
f:N→A,f(i)=ai
f:\mathbb{N}\to A,\quad f\left(i\right) =a_i
f:N→A,f(i)=ai
由此可见,AAA是可数集当且仅当AAA中所有元素可排列成一个无重复的序列,可以证明,“无重复”这一条件是可以省去的,也就是说,要证明一个集合是可数,只要证明该集合中的所有元素能够排成一个序列即可
例子1: N×N\mathbb{N}\times \mathbb{N}N×N是可数集
证明:
<0,0><0,1><0,2>⋯↙↙↙<1,0><1,1><1,2>⋯↙↙<2,0><2,1><2,2>⋯↙⋮⋮⋮ \begin{array}{cccc} \left<0,0\right> & & \left<0,1\right> & & \left<0,2\right> & & \cdots\\ &\swarrow&&\swarrow&&\swarrow&\\ \left<1,0\right> & & \left<1,1\right> & & \left<1,2\right> & & \cdots\\ &\swarrow&&\swarrow&&&\\ \left<2,0\right> & & \left<2,1\right> & & \left<2,2\right> & & \cdots\\ &\swarrow&&&&&\\ \vdots & & \vdots & &\vdots & &\\ \end{array} ⟨0,0⟩⟨1,0⟩⟨2,0⟩⋮↙↙↙⟨0,1⟩⟨1,1⟩⟨2,1⟩⋮↙↙⟨0,2⟩⟨1,2⟩⟨2,2⟩⋮↙⋯⋯⋯
f:N×N→Nf:\mathbb{N}\times \mathbb{N} \to \mathbb{N}f:N×N→N
f(m,n)=(m+n)(m+n+1)2+m
f\left(m,n\right) = \frac{\left(m + n\right)\left(m +n + 1\right)}{2} + m
f(m,n)=2(m+n)(m+n+1)+m
定理1: 可数集的任何子集都是可数集
定理2: 可数个可数集的并集是可数集
证明:
(1)有限个可数集的并集
设A0,A1,⋯ ,An−1A_0, A_1,\cdots, A_{n-1}A0,A1,⋯,An−1均是可数集,且Ai={ai0,ai1,⋯ ,},0≤i≤n−1A_i=\left\{a_{i0}, a_{i1},\cdots,\right\}, 0\le i \le n-1Ai={ai0,ai1,⋯,},0≤i≤n−1
(若AiA_iAi是有限集,则重复AiA_iAi的重复AiA_iAi的最后一个元素)
令ζ={A0,A1,⋯ ,An−1}\zeta = \left\{A_0, A_1,\cdots, A_{n-1}\right\}ζ={A0,A1,⋯,An−1},则∪ζ\cup \zeta∪ζ中的所有元素可排列为
A0a00a01a02⋯↓↓↓A1a10a11a12⋯↓↓↓⋮⋮⋮⋮↓↓↓An−1a(n−1)0a(n−1)1a(n−1)2⋯
\begin{array}{cccc}
A_0 & a_{00} & a_{01}& a_{02}&\cdots\\
&\downarrow & \downarrow&\downarrow&\\
A_1 & a_{10} & a_{11}& a_{12}&\cdots\\
&\downarrow & \downarrow&\downarrow&\\
\vdots & \vdots & \vdots & \vdots &\\
&\downarrow & \downarrow&\downarrow&\\
A_{n-1} & a_{\left(n-1\right)0} & a_{\left(n-1\right)1}& a_{\left(n-1\right)2}&\cdots\\
\end{array}
A0A1⋮An−1a00↓a10↓⋮↓a(n−1)0a01↓a11↓⋮↓a(n−1)1a02↓a12↓⋮↓a(n−1)2⋯⋯⋯
按上面箭头所指的方向,可将∪ζ\cup \zeta∪ζ中的所有元素排列成一个序列,故∪ζ\cup \zeta∪ζ是可数集
(2)可数无限个可数集的并集(?)
设A0,A1,⋯A_0, A_1,\cdotsA0,A1,⋯军事可数集,且Ai={ai0,ai1,⋯ ,},i∈NA_i=\left\{a_{i0}, a_{i1},\cdots,\right\}, i\in\mathbb{N}Ai={ai0,ai1,⋯,},i∈N
(若AiA_iAi是有限集,则重复AiA_iAi的重复AiA_iAi的最后一个元素)
令ζ={A0,A1,⋯ }\zeta = \left\{A_0, A_1,\cdots\right\}ζ={A0,A1,⋯},则∪ζ\cup \zeta∪ζ中的所有元素可排列为
A0a00a01a02⋯↙↙↙A1a10a11a12⋯↙↙A2a20a21a22⋯↙⋮⋮⋮⋮
\begin{array}{cccc}
A_0 & a_{00}&&a_{01}&&a_{02}&&\cdots\\
&&\swarrow&&\swarrow&&\swarrow&\\
A_1 & a_{10}&&a_{11}&&a_{12}&&\cdots\\
&&\swarrow&&\swarrow&&&\\
A_2 & a_{20}&&a_{21}&&a_{22}&&\cdots\\
&&\swarrow&&&&&\\
\vdots & \vdots&&\vdots&&\vdots&&\\
\end{array}
A0A1A2⋮a00a10a20⋮↙↙↙a01a11a21⋮↙↙a02a12a22⋮↙⋯⋯⋯
按上面所示的方式,可将∪ζ\cup\zeta∪ζ的所有元素排成一个序列,故∪ζ\cup\zeta∪ζ是可数的
定理3 若AAA和BBB是可数集,则A×BA\times BA×B是可数集
证明:因为AAA和BBB是可数集,不妨设A={a0,a1,⋯ }A = \left\{a_0,a_1,\cdots\right\}A={a0,a1,⋯}和B={b0,b1,⋯ }B = \left\{b_0,b_1,\cdots\right\}B={b0,b1,⋯}
(若是有限集则重复最后一个元素,那么A×BA\times BA×B中所有元素可排列为)
<a0,b0><a0,b1><a0,b2>⋯↙↙↙<a1,b0><a1,b1><a1,b2>⋯↙↙<a2,b0><a2,b1><a2,b2>⋯↙⋮⋮⋮
\begin{array}{cccc}
\left<a_0,b_0\right> & & \left<a_0,b_1\right> & & \left<a_0,b_2\right> & & \cdots\\
&\swarrow&&\swarrow&&\swarrow&\\
\left<a_1,b_0\right> & & \left<a_1,b_1\right> & & \left<a_1,b_2\right> & & \cdots\\
&\swarrow&&\swarrow&&&\\
\left<a_2,b_0\right> & & \left<a_2,b_1\right> & & \left<a_2,b_2\right> & & \cdots\\
&\swarrow&&&&&\\
\vdots & & \vdots & &\vdots & &\\
\end{array}
⟨a0,b0⟩⟨a1,b0⟩⟨a2,b0⟩⋮↙↙↙⟨a0,b1⟩⟨a1,b1⟩⟨a2,b1⟩⋮↙↙⟨a0,b2⟩⟨a1,b2⟩⟨a2,b2⟩⋮↙⋯⋯⋯
按上面的方式,可将A×BA\times BA×B的所有元素排列成一个序列,故A×BA\times BA×B是可数的
同理可证若AAA是可数集,则AnA^nAn也是可数集
定理4: 实数集合的子集[0,1]\left[0,1\right][0,1]不是可数无限集合
证明:设f:N→[0,1]f:\mathbb{N}\to \left[0,1\right]f:N→[0,1]我们把fff的值顺序排列为十进制小数:
f(0)=0.x00x01x02⋯ ,f(1)=0.x10x11x12⋯ ,⋯
\begin{aligned}
f\left(0\right) &= 0.x_{00}x_{01}x_{02}\cdots,\\
f\left(1\right) &= 0.x_{10}x_{11}x_{12}\cdots,\\
\cdots
\end{aligned}
f(0)f(1)⋯=0.x00x01x02⋯,=0.x10x11x12⋯,
其中0≤xij≤9(i,j∈N)0\le x_{ij} \le 9\left(i,j\in\mathbb{N}\right)0≤xij≤9(i,j∈N)
构造y=0.y0y1y2⋯y=0.y_0y_1y_2\cdotsy=0.y0y1y2⋯
yi={1,xii≠12,xii=1
y_i=\begin{cases}
1, &x_{ii}\neq 1\\
2,&x_{ii} = 1
\end{cases}
yi={1,2,xii=1xii=1
y∈[0,1]y\in\left[0,1\right]y∈[0,1]但是y∉f(N)y\notin f\left(\mathbb{N}\right)y∈/f(N)
fff不满射
这个方法叫康托对角线法
{0,11,12,13,⋯ }⊆[0,1]\left\{0, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots\right\} \subseteq \left[0,1\right]{0,11,21,31,⋯}⊆[0,1]可见不是有限集
设AAA是任意集合,若[0,1]∼A\left[0,1\right]\sim A[0,1]∼A,则称AAA的基数为ℵ\alephℵ,并称AAA是具有连续统势的集合,记为∣A∣=ℵ\left|A\right|=\aleph∣A∣=ℵ
定理5 设A,B,CA, B, CA,B,C和DDD是任意集合,A∼B,C∼D,A∩C=B∩D=∅A\sim B, C \sim D, A\cap C = B \cap D = \emptyA∼B,C∼D,A∩C=B∩D=∅,则A∪C∼B∪DA\cup C \sim B\cup DA∪C∼B∪D
证明:由于A∼B,C∼DA\sim B, C\sim DA∼B,C∼D,存在双射f1:A→Bf_1:A\to Bf1:A→B和f2:C→Df_2: C\to Df2:C→D
令
f:A∪C→B∪Df(x)={f1(x),x∈Af2(x),x∈C
f:A \cup C \to B \cup D\\
f\left(x\right) = \begin{cases}
f_1\left(x\right), & x \in A\\
f_2\left(x\right), & x \in C\\
\end{cases}
f:A∪C→B∪Df(x)={f1(x),f2(x),x∈Ax∈C
因为A∩C=∅A\cap C = \emptyA∩C=∅,所以fff是一个函数,下面证明fff双射
(1)f是满射,对任意的y∈B∪Dy\in B \cup Dy∈B∪D,则有y∈B∨y∈Dy \in B \vee y \in Dy∈B∨y∈D
若y∈By \in By∈B,因为f1f_1f1满射,所以有x∈Ax\in Ax∈A使y=f1(x)y = f_1\left(x\right)y=f1(x),即x∈A∪Cx\in A \cup Cx∈A∪C,使y=f1(x)=f(x)y= f_1\left(x\right) = f\left(x\right)y=f1(x)=f(x)
若y∈Dy\in Dy∈D,同理
故fff满射
(2)f单射。对任意的x1,x2∈A∪Cx_1,x_2\in A\cup Cx1,x2∈A∪C,若f(x1)=f(x2)f\left(x_1\right) = f\left(x_2\right)f(x1)=f(x2),那么
若f(x1)=f(x2)∈Bf\left(x_1\right) = f\left(x_2\right) \in Bf(x1)=f(x2)∈B,则因为f(A)=B,f(C)=D,B∩D=∅f\left(A\right) = B,f\left(C\right)=D,B\cap D = \emptyf(A)=B,f(C)=D,B∩D=∅, 有x1,x2∈Ax_1,x_2\in Ax1,x2∈A
所以f(x1)=f1(x1),f(x2)=f1(x2)f\left(x_1\right) =f_1\left(x_1\right),f\left(x_2\right) =f_1\left(x_2\right)f(x1)=f1(x1),f(x2)=f1(x2),即f1(x1)=f1(x2)f_1\left(x_1\right) =f_1\left(x_2\right)f1(x1)=f1(x2)
又因为f1f_1f1单射,x1=x2x_1=x_2x1=x2
若f(x1)=f(x2)∈Df\left(x_1\right)=f\left(x_2\right)\in Df(x1)=f(x2)∈D,同理可证x1=x2x_1=x_2x1=x2
fff单射
所以A∪C∼B∪DA\cup C \sim B \cup DA∪C∼B∪D
课后习题
1.设AAA和BBB是无限集,CCC是有限集,下列集合是否一定为无限集合?为什么?
(1)A∩BA\cap BA∩B
(2)A−BA-BA−B
(3)A∪CA\cup CA∪C
(4)A−CA-CA−C
解:
(1)不一定
Ev∩Ov=∅\mathbb{E}_v\cap \mathbb{O}_v=\emptyEv∩Ov=∅
(2)不一定
A−A=∅A-A=\emptyA−A=∅
(3)一定
(4)一定
4.设AAA是可数无限集,BBB是有限集。求下列集合的基数,并证明你的结论
(1)A∪BA\cup BA∪B
(2)A−BA-BA−B
解:
(1)
设A={a0,a1,⋯ }A=\left\{a_0, a_1,\cdots\right\}A={a0,a1,⋯}
B={b0,b1,⋯ ,bn−1}B=\left\{b_0,b_1,\cdots,b_{n-1}\right\}B={b0,b1,⋯,bn−1}
不妨假设A−B={au0,au1,⋯ }A-B=\left\{a_{u_0},a_{u_1},\cdots\right\}A−B={au0,au1,⋯}
构造双射函数f:A→A∪Bf:A\to A\cup Bf:A→A∪B
f(ai)=bi,i=0,1,⋯ ,n−1f(ai)=aun−i,i=n,n+1,⋯
f\left(a_i\right)=b_i,\quad i=0,1,\cdots,n-1\\
f\left(a_i\right)=a_{u_{n-i}},\quad i=n,n+1,\cdots
f(ai)=bi,i=0,1,⋯,n−1f(ai)=aun−i,i=n,n+1,⋯
因此∣A∣=∣A∪B∣=ℵ0\left|A\right|=\left|A\cup B\right|=\aleph_0∣A∣=∣A∪B∣=ℵ0
(2)
设A={a0,a1,⋯ }A=\left\{a_0, a_1,\cdots\right\}A={a0,a1,⋯}
不妨假设A−B={au0,au1,⋯ }A-B=\left\{a_{u_0},a_{u_1},\cdots\right\}A−B={au0,au1,⋯}
构造双射函数f:A→A∪Bf:A\to A\cup Bf:A→A∪B
f(ai)=aui
f\left(a_i\right)=a_{u_{i}}
f(ai)=aui
因此∣A∣=∣A−B∣=ℵ0\left|A\right|=\left|A- B\right|=\aleph_0∣A∣=∣A−B∣=ℵ0
参考:
离散数学(刘玉珍)