商代数与积代数

商代数

RRR使A=<S,∗1,∗2,⋯ ,∗n>A = \left<S, *_1, *_2,\cdots, *_n\right>A=S,1,2,,n上的同余关系,则RRR使SSS上的等价关系,因此RRR可诱导出SSS的一个划分S/R={[a]R∣a∈S}S/ R = \left\{\left[a\right]_R | a \in S\right\}S/R={[a]RaS}.对于运算∗i*_ii,定义S/RS/RS/R上的同阶运算⊛i\circledast_ii为:∀[a1]R,[a2]R,⋯ ,[ani]R∈S/R\forall \left[a_1\right]_R, \left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R \in S / R[a1]R,[a2]R,,[ani]RS/R,
⊛i([a1]R,[a2]R,⋯ ,[ani]R)=[∗i(a1,a2,⋯ ,ani)]R \circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R, \cdots,\left[a_{n_i}\right]_R\right) = \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R i([a1]R,[a2]R,,[ani]R)=[i(a1,a2,,ani)]R
⊛i\circledast_ii是良定的,因为运算结果并不依赖于各等价类的代表元的选取:

[ak]R=[bk]R\left[a_k\right]_R = \left[b_k\right]_R[ak]R=[bk]R, 则akRbka_k R b_kakRbk,因为RRRAAA上的同余关系,所以
∗i(a1,a2,⋯ ,ani)R∗i(b1,b2,⋯ ,bni)*_i\left(a_1,a_2,\cdots, a_{n_i}\right) R *_i\left(b_1,b_2,\cdots, b_{n_i}\right)i(a1,a2,,ani)Ri(b1,b2,,bni),故
[∗i(a1,a2,⋯ ,ani)]R=[∗i(b1,b2,⋯ ,bni)]R \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R = \left[*_i\left(b_1,b_2,\cdots, b_{n_i}\right)\right]_R [i(a1,a2,,ani)]R=[i(b1,b2,,bni)]R

RRR是代数系统A=<S,∗1,∗2,⋯ ,∗n>A=\left<S, *_1, *_2,\cdots, *_n\right>A=S,1,2,,n删的同余关系,则称代数系统
A/R=<S/R,⊛1,⊛2,⋯ ,⊛n>A/R = \left<S/R, \circledast_1,\circledast_2,\cdots, \circledast_n\right>A/R=S/R,1,2,,nAAA关于RRR商代数

定理1:RRR是代数系统A=<S,∗1,∗2,⋯ ,∗n>A = \left<S, *_1, *_2,\cdots, *_n\right>A=S,1,2,,n上的同余关系,函数f:S→S/Rf:S\to S/Rf:SS/R定义为
∀a∈S,f(a)=[a]R\forall a \in S, f\left(a\right) = \left[a\right]_RaS,f(a)=[a]R,则fff是从AAA到商代数A/RA/RA/R的满同态,称为自然同态

证明:
∀i∈N(1≤i≤n),∀a1,a2,⋯ ,ani∈S\forall i \in \mathbb{N}\left(1\le i \le n\right), \forall a_1, a_2,\cdots, a_{n_i} \in SiN(1in),a1,a2,,aniS
f(∗i(a1,a2,⋯ ,ani))=[∗i(a1,a2,⋯ ,ani)]R=⊛i([a1]R,[a2]R,⋯ ,[ani]R)=⊛i(f(a1),f(a2),⋯ ,f(ani)) \begin{aligned} f\left(*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right) &= \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R\\ &=\circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R, \cdots,\left[a_{n_i}\right]_R\right)\\ &=\circledast_i\left(f\left(a_1\right),f\left(a_2\right), \cdots,f\left(a_{n_i}\right)\right) \end{aligned} f(i(a1,a2,,ani))=[i(a1,a2,,ani)]R=i([a1]R,[a2]R,,[ani]R)=i(f(a1),f(a2),,f(ani))
所以fffAAAA/RA/RA/R的同态。
∀x∈S/R,∃a∈S\forall x \in S/R,\exists a \in SxS/R,aS,使得x=[a]Rx = \left[a\right]_Rx=[a]R,于是f(a)=[a]R=xf\left(a\right) = \left[a\right]_R = xf(a)=[a]R=x,所以fff满射。故fffAAAA/RA/RA/R的满同态
由于fff是从AAAA/RA/RA/R的满同态,因此AAA的主要代数性质再其商代数A/RA/RA/R中仍然保持

定理2:hhh是从A=<S,∗1,∗2,⋯ ,∗n>A=\left<S, *_1, *_2,\cdots, *_n\right>A=S,1,2,,nA′=<S′,∗1′,∗2′,⋯ ,∗n′>A^{\prime}=\left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right>A=S,1,2,,n的同态
RRRAAA上由hhh诱导的同余关系,fff是从AAA到商代数A/RA/RA/R的自然同态,那么存在从A/RA/RA/Rh(A)h\left(A\right)h(A)的同构ggg,使得g∘f=hg\circ f = hgf=h

证明:
在这里插入图片描述

g:S/R→h(S),[a]R↦h(a)g:S/R \to h\left(S\right), [a]_R \mapsto h(a)g:S/Rh(S),[a]Rh(a)
1.ggg是良定的,∀[a]R,[b]R∈S/R\forall \left[a\right]_R, \left[b\right]_R \in S / R[a]R,[b]RS/R,若[a]R=[b]R\left[a\right]_R = \left[b\right]_R[a]R=[b]R,则aRbaRbaRb,所以h(a)=h(b)h\left(a\right) = h\left(b\right)h(a)=h(b)
2.ggg是单射。∀[a]R,[b]R∈S/R\forall \left[a\right]_R, \left[b\right]_R\in S/R[a]R,[b]RS/R,若g([a]R)=g([b]R)g\left(\left[a\right]_R\right) = g\left(\left[b\right]_R\right)g([a]R)=g([b]R),则h(a)=h(b)h\left(a\right) = h\left(b\right)h(a)=h(b),所以aRb,[a]R=[b]RaRb, \left[a\right]_R= \left[b\right]_RaRb,[a]R=[b]R
3.ggg是满射,∀x∈h(S),∃a∈S\forall x \in h\left(S\right),\exists a \in Sxh(S),aS,使得h(a)=xh\left(a\right) = xh(a)=x,所以
g([a]R)=h(a)=x g\left(\left[a\right]_R\right) = h\left(a\right) = x g([a]R)=h(a)=x
4.ggg是同态,∀i∈N(1≤i≤n),∀[a1]R,[a2]R,⋯ ,[ani]R∈S/R\forall i \in \mathbb{N}\left(1\le i \le n\right) ,\forall \left[a_1\right]_R,\left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R \in S/ RiN(1in),[a1]R,[a2]R,,[ani]RS/R

g(⊛i([a1]R,[a2]R,⋯ ,[ani]R))=g([∗i(a1,a2,⋯ ,ani)]R)=h(∗i(a1,a2,⋯ ,ani))=∗i′(h(a1),h(a2),⋯ ,h(ani))=∗i′(g([a1]R),g([a2]R),⋯ ,g([ani]R)) \begin{aligned} &g\left(\circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R\right)\right)\\ =&g\left(\left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R\right)\\ =&h\left(*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right)\\ =&*_i^{\prime}\left(h\left(a_1\right), h\left(a_2\right),\cdots, h\left(a_{n_i}\right)\right)\\ =&*_i^{\prime}\left(g\left(\left[a_1\right]_R\right), g\left(\left[a_2\right]_R\right), \cdots, g\left(\left[a_{n_i}\right]_R\right)\right) \end{aligned} ====g(i([a1]R,[a2]R,,[ani]R))g([i(a1,a2,,ani)]R)h(i(a1,a2,,ani))i(h(a1),h(a2),,h(ani))i(g([a1]R),g([a2]R),,g([ani]R))
ggg是从A/RA/RA/Rh(A)h\left(A\right)h(A)的同构
并且∀a∈S,g∘f(a)=g(f(a))=g([a]R)=h(a)\forall a \in S, g\circ f\left(a\right) = g\left(f\left(a\right)\right) = g\left(\left[a\right]_R\right) = h\left(a\right)aS,gf(a)=g(f(a))=g([a]R)=h(a),故g∘f=hg\circ f = hgf=h

推论:设hhh是从AAAA′A^{\prime}A的满同态,RRRAAA上由hhh诱导的同余关系,则
A/R≅A′ A/R \cong A^{\prime} A/RA

积代数

Ai=<Si,∗i1,∗i2,⋯ ,∗in>(i=1,2,⋯ ,m)A_i=\left<S_i, *_{i1}, *_{i2},\cdots, *_{in}\right>\left(i=1,2,\cdots, m\right)Ai=Si,i1,i2,,in(i=1,2,,m)为同型的代数系统,
A1,A2,⋯ ,AmA_1,A_2,\cdots, A_mA1,A2,,Am积代数×i=1mAi\times_{i=1}^{m}A_i×i=1mAi定义为代数系统<×i=1mSi,∗1,∗2,⋯ ,∗n>\left<\times_{i=1}^{m} S_i,*_1,*_2,\cdots, *_n\right>×i=1mSi,1,2,,n,其中运算∗j*_jj定义如下:
∀<a11,a21,⋯ ,am1>,<a12,a22,⋯ ,am2>,⋯<a1nj,a2nj,⋯ ,amnj>∈S1×S2×⋯×Sm\forall \left<a_{11}, a_{21},\cdots, a_{m1}\right>, \left<a_{12}, a_{22},\cdots, a_{m2}\right>,\cdots \left<a_{1n_{j}}, a_{2n_{j}},\cdots, a_{mn_{j}}\right>\in S1\times S_2\times \cdots \times S_ma11,a21,,am1,a12,a22,,am2,a1nj,a2nj,,amnjS1×S2××Sm,
∗j(⟨a11,a21,⋯ ,am1⟩,⟨a12,a22,⋯ ,am2⟩,⋯ ,⟨a1nj,a2nj,⋯ ,amnj⟩)=⟨∗1j(a11,a12,⋯ ,a1nj),∗2j(a21,a22,⋯ ,a2nj),⋯ ,∗mj(am1,am2,⋯ ,amnj)⟩. \begin{aligned} & *_j\left(\left\langle a_{11}, a_{21}, \cdots, a_{m 1}\right\rangle,\left\langle a_{12}, a_{22}, \cdots, a_{m 2}\right\rangle, \cdots,\left\langle a_{1 n_j}, a_{2 n_j}, \cdots, a_{m n_j}\right\rangle\right) \\ & =\left\langle *_{1 j}\left(a_{11}, a_{12}, \cdots, a_{1 n_j}\right), *_{2 j}\left(a_{21}, a_{22}, \cdots, a_{2 n_j}\right), \cdots,\right. \\ & \left.\quad *{ }_{m j}\left(a_{m 1}, a_{m 2}, \cdots, a_{m n_j}\right)\right\rangle . \end{aligned} j(a11,a21,,am1,a12,a22,,am2,,a1nj,a2nj,,amnj)=1j(a11,a12,,a1nj),2j(a21,a22,,a2nj),,mj(am1,am2,,amnj).

定理:Ai=<Si,∗i,+i>A_i = \left<S_i, *_i, +_i\right>Ai=Si,i,+i为同型的代数系统,∗i*_ii+i+_i+i为二元运算,积代数×i=1mAi=<×i=1mSi,∗,+>\times_{i=1}^{m}A_i=\left<\times_{i=1}^{m}S_i, *, +\right>×i=1mAi=×i=1mSi,,+

(1)若∗i*_ii可交换,则∗*也是可交换的
(2)若∗i*_ii是可结合的,则∗*也是可结合的
(3)若∗i*_ii关于+i+_i+i是可分配的,则∗*关于+++也是可分配的
(4)若eie_iei是关于∗i*_ii的单位元,则<e1,e2,⋯ ,em>\left<e_1,e_2,\cdots, e_m\right>e1,e2,,em是关于∗*的单位元
(5)若0i0_i0i是关于∗i*_ii的零元,则<01,02,⋯ ,0m>\left<0_1,0_2,\cdots, 0_m\right>01,02,,0m是关于∗*的零元
(6)若ai∈Sia_i\in S_iaiSi关于∗i*_ii由逆元a−1a^{-1}a1,则<a1,a2,⋯ ,am>\left<a_1,a_2,\cdots, a_m\right>a1,a2,,am关于∗*由逆元<a1−1,a2−1,⋯ ,am−1>\left<a_1^{-1},a_2^{-1},\cdots, a_m^{-1}\right>a11,a21,,am1

课后习题

1.设代数系统A=<S,∗,⊕>A=\left<S, *, \oplus\right>A=S,,,其中S={a1,a2,a3,a4,a5}S=\left\{a_1,a_2,a_3,a_4,a_5\right\}S={a1,a2,a3,a4,a5},∗*⊕\oplus都是一元运算,
运算表如下表所示。RRRSSS上的等价关系,S/R={{a1,a3},{a2,a5},{a4}}S/R=\left\{\left\{a_1,a_3\right\},\left\{a_2,a_5\right\},\left\{a_4\right\}\right\}S/R={{a1,a3},{a2,a5},{a4}}
试证明:RRRAAA上的同余关系。构造商代数A/RA/RA/R的运算表,并求从AAAA/RA/RA/R的自然同态

aia_iai∗(ai)*\left(a_i\right)(ai)⊕(ai)\oplus\left(a_i\right)(ai)
a1a_1a1a4a_4a4a3a_3a3
a2a_2a2a3a_3a3a2a_2a2
a3a_3a3a4a_4a4a1a_1a1
a4a_4a4a2a_2a2a3a_3a3
a5a_5a5a1a_1a1a5a_5a5

证明:
∗(a1),∗(a3)∈[a4]R∗(a2),∗(a5)∈[a1]R∗(a4)∈[a2]R⊕(a1),⊕(a3)∈[a1]R⊕(a2),⊕(a5)∈[a2]R⊕(a4)∈[a1]R *\left(a_1\right),*\left(a_3\right)\in\left[a_4\right]_R\\ *\left(a_2\right),*\left(a_5\right)\in\left[a_1\right]_R\\ *\left(a_4\right)\in\left[a_2\right]_R\\ \oplus\left(a_1\right),\oplus\left(a_3\right)\in\left[a_1\right]_R\\ \oplus\left(a_2\right),\oplus\left(a_5\right)\in\left[a_2\right]_R\\ \oplus\left(a_4\right)\in\left[a_1\right]_R\\ (a1),(a3)[a4]R(a2),(a5)[a1]R(a4)[a2]R(a1),(a3)[a1]R(a2),(a5)[a2]R(a4)[a1]R
因此RRRAAA上的同余关系

商代数A/RA/RA/R的运算表

∗′*^{\prime}⊕′\oplus^{\prime}
[a1]R\left[a_1\right]_R[a1]R[a4]R\left[a_4\right]_R[a4]R[a1]R\left[a_1\right]_R[a1]R
[a2]R\left[a_2\right]_R[a2]R[a1]R\left[a_1\right]_R[a1]R[a2]R\left[a_2\right]_R[a2]R
[a4]R\left[a_4\right]_R[a4]R[a2]R\left[a_2\right]_R[a2]R[a1]R\left[a_1\right]_R[a1]R

g:A→A/Rg:A\to A/Rg:AA/R
g(a)=[a]R g\left(a\right)=\left[a\right]_R g(a)=[a]R

参考:
离散数学(刘玉珍)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值