商代数
设RRR使A=<S,∗1,∗2,⋯ ,∗n>A = \left<S, *_1, *_2,\cdots, *_n\right>A=⟨S,∗1,∗2,⋯,∗n⟩上的同余关系,则RRR使SSS上的等价关系,因此RRR可诱导出SSS的一个划分S/R={[a]R∣a∈S}S/ R = \left\{\left[a\right]_R | a \in S\right\}S/R={[a]R∣a∈S}.对于运算∗i*_i∗i,定义S/RS/RS/R上的同阶运算⊛i\circledast_i⊛i为:∀[a1]R,[a2]R,⋯ ,[ani]R∈S/R\forall \left[a_1\right]_R, \left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R \in S / R∀[a1]R,[a2]R,⋯,[ani]R∈S/R,
⊛i([a1]R,[a2]R,⋯ ,[ani]R)=[∗i(a1,a2,⋯ ,ani)]R
\circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R, \cdots,\left[a_{n_i}\right]_R\right) = \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R
⊛i([a1]R,[a2]R,⋯,[ani]R)=[∗i(a1,a2,⋯,ani)]R
⊛i\circledast_i⊛i是良定的,因为运算结果并不依赖于各等价类的代表元的选取:
若[ak]R=[bk]R\left[a_k\right]_R = \left[b_k\right]_R[ak]R=[bk]R, 则akRbka_k R b_kakRbk,因为RRR是AAA上的同余关系,所以
∗i(a1,a2,⋯ ,ani)R∗i(b1,b2,⋯ ,bni)*_i\left(a_1,a_2,\cdots, a_{n_i}\right) R *_i\left(b_1,b_2,\cdots, b_{n_i}\right)∗i(a1,a2,⋯,ani)R∗i(b1,b2,⋯,bni),故
[∗i(a1,a2,⋯ ,ani)]R=[∗i(b1,b2,⋯ ,bni)]R
\left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R = \left[*_i\left(b_1,b_2,\cdots, b_{n_i}\right)\right]_R
[∗i(a1,a2,⋯,ani)]R=[∗i(b1,b2,⋯,bni)]R
设RRR是代数系统A=<S,∗1,∗2,⋯ ,∗n>A=\left<S, *_1, *_2,\cdots, *_n\right>A=⟨S,∗1,∗2,⋯,∗n⟩删的同余关系,则称代数系统
A/R=<S/R,⊛1,⊛2,⋯ ,⊛n>A/R = \left<S/R, \circledast_1,\circledast_2,\cdots, \circledast_n\right>A/R=⟨S/R,⊛1,⊛2,⋯,⊛n⟩为AAA关于RRR的商代数
定理1: 设RRR是代数系统A=<S,∗1,∗2,⋯ ,∗n>A = \left<S, *_1, *_2,\cdots, *_n\right>A=⟨S,∗1,∗2,⋯,∗n⟩上的同余关系,函数f:S→S/Rf:S\to S/Rf:S→S/R定义为
∀a∈S,f(a)=[a]R\forall a \in S, f\left(a\right) = \left[a\right]_R∀a∈S,f(a)=[a]R,则fff是从AAA到商代数A/RA/RA/R的满同态,称为自然同态
证明:
∀i∈N(1≤i≤n),∀a1,a2,⋯ ,ani∈S\forall i \in \mathbb{N}\left(1\le i \le n\right), \forall a_1, a_2,\cdots, a_{n_i} \in S∀i∈N(1≤i≤n),∀a1,a2,⋯,ani∈S
f(∗i(a1,a2,⋯ ,ani))=[∗i(a1,a2,⋯ ,ani)]R=⊛i([a1]R,[a2]R,⋯ ,[ani]R)=⊛i(f(a1),f(a2),⋯ ,f(ani))
\begin{aligned}
f\left(*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right) &= \left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R\\
&=\circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R, \cdots,\left[a_{n_i}\right]_R\right)\\
&=\circledast_i\left(f\left(a_1\right),f\left(a_2\right), \cdots,f\left(a_{n_i}\right)\right)
\end{aligned}
f(∗i(a1,a2,⋯,ani))=[∗i(a1,a2,⋯,ani)]R=⊛i([a1]R,[a2]R,⋯,[ani]R)=⊛i(f(a1),f(a2),⋯,f(ani))
所以fff为AAA到A/RA/RA/R的同态。
又∀x∈S/R,∃a∈S\forall x \in S/R,\exists a \in S∀x∈S/R,∃a∈S,使得x=[a]Rx = \left[a\right]_Rx=[a]R,于是f(a)=[a]R=xf\left(a\right) = \left[a\right]_R = xf(a)=[a]R=x,所以fff满射。故fff为AAA到A/RA/RA/R的满同态
由于fff是从AAA到A/RA/RA/R的满同态,因此AAA的主要代数性质再其商代数A/RA/RA/R中仍然保持
定理2: 设hhh是从A=<S,∗1,∗2,⋯ ,∗n>A=\left<S, *_1, *_2,\cdots, *_n\right>A=⟨S,∗1,∗2,⋯,∗n⟩到A′=<S′,∗1′,∗2′,⋯ ,∗n′>A^{\prime}=\left<S^{\prime}, *_1^{\prime}, *_2^{\prime},\cdots, *_n^{\prime}\right>A′=⟨S′,∗1′,∗2′,⋯,∗n′⟩的同态
RRR是AAA上由hhh诱导的同余关系,fff是从AAA到商代数A/RA/RA/R的自然同态,那么存在从A/RA/RA/R到h(A)h\left(A\right)h(A)的同构ggg,使得g∘f=hg\circ f = hg∘f=h
证明:
作g:S/R→h(S),[a]R↦h(a)g:S/R \to h\left(S\right), [a]_R \mapsto h(a)g:S/R→h(S),[a]R↦h(a)
1.ggg是良定的,∀[a]R,[b]R∈S/R\forall \left[a\right]_R, \left[b\right]_R \in S / R∀[a]R,[b]R∈S/R,若[a]R=[b]R\left[a\right]_R = \left[b\right]_R[a]R=[b]R,则aRbaRbaRb,所以h(a)=h(b)h\left(a\right) = h\left(b\right)h(a)=h(b)
2.ggg是单射。∀[a]R,[b]R∈S/R\forall \left[a\right]_R, \left[b\right]_R\in S/R∀[a]R,[b]R∈S/R,若g([a]R)=g([b]R)g\left(\left[a\right]_R\right) = g\left(\left[b\right]_R\right)g([a]R)=g([b]R),则h(a)=h(b)h\left(a\right) = h\left(b\right)h(a)=h(b),所以aRb,[a]R=[b]RaRb, \left[a\right]_R= \left[b\right]_RaRb,[a]R=[b]R
3.ggg是满射,∀x∈h(S),∃a∈S\forall x \in h\left(S\right),\exists a \in S∀x∈h(S),∃a∈S,使得h(a)=xh\left(a\right) = xh(a)=x,所以
g([a]R)=h(a)=x
g\left(\left[a\right]_R\right) = h\left(a\right) = x
g([a]R)=h(a)=x
4.ggg是同态,∀i∈N(1≤i≤n),∀[a1]R,[a2]R,⋯ ,[ani]R∈S/R\forall i \in \mathbb{N}\left(1\le i \le n\right) ,\forall \left[a_1\right]_R,\left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R \in S/ R∀i∈N(1≤i≤n),∀[a1]R,[a2]R,⋯,[ani]R∈S/R
g(⊛i([a1]R,[a2]R,⋯ ,[ani]R))=g([∗i(a1,a2,⋯ ,ani)]R)=h(∗i(a1,a2,⋯ ,ani))=∗i′(h(a1),h(a2),⋯ ,h(ani))=∗i′(g([a1]R),g([a2]R),⋯ ,g([ani]R))
\begin{aligned}
&g\left(\circledast_i\left(\left[a_1\right]_R,\left[a_2\right]_R,\cdots, \left[a_{n_i}\right]_R\right)\right)\\
=&g\left(\left[*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right]_R\right)\\
=&h\left(*_i\left(a_1,a_2,\cdots, a_{n_i}\right)\right)\\
=&*_i^{\prime}\left(h\left(a_1\right), h\left(a_2\right),\cdots, h\left(a_{n_i}\right)\right)\\
=&*_i^{\prime}\left(g\left(\left[a_1\right]_R\right), g\left(\left[a_2\right]_R\right), \cdots, g\left(\left[a_{n_i}\right]_R\right)\right)
\end{aligned}
====g(⊛i([a1]R,[a2]R,⋯,[ani]R))g([∗i(a1,a2,⋯,ani)]R)h(∗i(a1,a2,⋯,ani))∗i′(h(a1),h(a2),⋯,h(ani))∗i′(g([a1]R),g([a2]R),⋯,g([ani]R))
故ggg是从A/RA/RA/R到h(A)h\left(A\right)h(A)的同构
并且∀a∈S,g∘f(a)=g(f(a))=g([a]R)=h(a)\forall a \in S, g\circ f\left(a\right) = g\left(f\left(a\right)\right) = g\left(\left[a\right]_R\right) = h\left(a\right)∀a∈S,g∘f(a)=g(f(a))=g([a]R)=h(a),故g∘f=hg\circ f = hg∘f=h
推论:设hhh是从AAA到A′A^{\prime}A′的满同态,RRR是AAA上由hhh诱导的同余关系,则
A/R≅A′
A/R \cong A^{\prime}
A/R≅A′
积代数
设Ai=<Si,∗i1,∗i2,⋯ ,∗in>(i=1,2,⋯ ,m)A_i=\left<S_i, *_{i1}, *_{i2},\cdots, *_{in}\right>\left(i=1,2,\cdots, m\right)Ai=⟨Si,∗i1,∗i2,⋯,∗in⟩(i=1,2,⋯,m)为同型的代数系统,
则A1,A2,⋯ ,AmA_1,A_2,\cdots, A_mA1,A2,⋯,Am的积代数×i=1mAi\times_{i=1}^{m}A_i×i=1mAi定义为代数系统<×i=1mSi,∗1,∗2,⋯ ,∗n>\left<\times_{i=1}^{m} S_i,*_1,*_2,\cdots, *_n\right>⟨×i=1mSi,∗1,∗2,⋯,∗n⟩,其中运算∗j*_j∗j定义如下:
∀<a11,a21,⋯ ,am1>,<a12,a22,⋯ ,am2>,⋯<a1nj,a2nj,⋯ ,amnj>∈S1×S2×⋯×Sm\forall \left<a_{11}, a_{21},\cdots, a_{m1}\right>, \left<a_{12}, a_{22},\cdots, a_{m2}\right>,\cdots \left<a_{1n_{j}}, a_{2n_{j}},\cdots, a_{mn_{j}}\right>\in S1\times S_2\times \cdots \times S_m∀⟨a11,a21,⋯,am1⟩,⟨a12,a22,⋯,am2⟩,⋯⟨a1nj,a2nj,⋯,amnj⟩∈S1×S2×⋯×Sm,
∗j(⟨a11,a21,⋯ ,am1⟩,⟨a12,a22,⋯ ,am2⟩,⋯ ,⟨a1nj,a2nj,⋯ ,amnj⟩)=⟨∗1j(a11,a12,⋯ ,a1nj),∗2j(a21,a22,⋯ ,a2nj),⋯ ,∗mj(am1,am2,⋯ ,amnj)⟩.
\begin{aligned}
& *_j\left(\left\langle a_{11}, a_{21}, \cdots, a_{m 1}\right\rangle,\left\langle a_{12}, a_{22}, \cdots, a_{m 2}\right\rangle, \cdots,\left\langle a_{1 n_j}, a_{2 n_j}, \cdots, a_{m n_j}\right\rangle\right) \\
& =\left\langle *_{1 j}\left(a_{11}, a_{12}, \cdots, a_{1 n_j}\right),
*_{2 j}\left(a_{21}, a_{22}, \cdots, a_{2 n_j}\right), \cdots,\right. \\
& \left.\quad *{ }_{m j}\left(a_{m 1}, a_{m 2}, \cdots, a_{m n_j}\right)\right\rangle .
\end{aligned}
∗j(⟨a11,a21,⋯,am1⟩,⟨a12,a22,⋯,am2⟩,⋯,⟨a1nj,a2nj,⋯,amnj⟩)=⟨∗1j(a11,a12,⋯,a1nj),∗2j(a21,a22,⋯,a2nj),⋯,∗mj(am1,am2,⋯,amnj)⟩.
定理: 设Ai=<Si,∗i,+i>A_i = \left<S_i, *_i, +_i\right>Ai=⟨Si,∗i,+i⟩为同型的代数系统,∗i*_i∗i和+i+_i+i为二元运算,积代数×i=1mAi=<×i=1mSi,∗,+>\times_{i=1}^{m}A_i=\left<\times_{i=1}^{m}S_i, *, +\right>×i=1mAi=⟨×i=1mSi,∗,+⟩
(1)若∗i*_i∗i可交换,则∗*∗也是可交换的
(2)若∗i*_i∗i是可结合的,则∗*∗也是可结合的
(3)若∗i*_i∗i关于+i+_i+i是可分配的,则∗*∗关于+++也是可分配的
(4)若eie_iei是关于∗i*_i∗i的单位元,则<e1,e2,⋯ ,em>\left<e_1,e_2,\cdots, e_m\right>⟨e1,e2,⋯,em⟩是关于∗*∗的单位元
(5)若0i0_i0i是关于∗i*_i∗i的零元,则<01,02,⋯ ,0m>\left<0_1,0_2,\cdots, 0_m\right>⟨01,02,⋯,0m⟩是关于∗*∗的零元
(6)若ai∈Sia_i\in S_iai∈Si关于∗i*_i∗i由逆元a−1a^{-1}a−1,则<a1,a2,⋯ ,am>\left<a_1,a_2,\cdots, a_m\right>⟨a1,a2,⋯,am⟩关于∗*∗由逆元<a1−1,a2−1,⋯ ,am−1>\left<a_1^{-1},a_2^{-1},\cdots, a_m^{-1}\right>⟨a1−1,a2−1,⋯,am−1⟩
课后习题
1.设代数系统A=<S,∗,⊕>A=\left<S, *, \oplus\right>A=⟨S,∗,⊕⟩,其中S={a1,a2,a3,a4,a5}S=\left\{a_1,a_2,a_3,a_4,a_5\right\}S={a1,a2,a3,a4,a5},∗*∗和⊕\oplus⊕都是一元运算,
运算表如下表所示。RRR为SSS上的等价关系,S/R={{a1,a3},{a2,a5},{a4}}S/R=\left\{\left\{a_1,a_3\right\},\left\{a_2,a_5\right\},\left\{a_4\right\}\right\}S/R={{a1,a3},{a2,a5},{a4}}
试证明:RRR是AAA上的同余关系。构造商代数A/RA/RA/R的运算表,并求从AAA到A/RA/RA/R的自然同态
aia_iai | ∗(ai)*\left(a_i\right)∗(ai) | ⊕(ai)\oplus\left(a_i\right)⊕(ai) |
---|---|---|
a1a_1a1 | a4a_4a4 | a3a_3a3 |
a2a_2a2 | a3a_3a3 | a2a_2a2 |
a3a_3a3 | a4a_4a4 | a1a_1a1 |
a4a_4a4 | a2a_2a2 | a3a_3a3 |
a5a_5a5 | a1a_1a1 | a5a_5a5 |
证明:
∗(a1),∗(a3)∈[a4]R∗(a2),∗(a5)∈[a1]R∗(a4)∈[a2]R⊕(a1),⊕(a3)∈[a1]R⊕(a2),⊕(a5)∈[a2]R⊕(a4)∈[a1]R
*\left(a_1\right),*\left(a_3\right)\in\left[a_4\right]_R\\
*\left(a_2\right),*\left(a_5\right)\in\left[a_1\right]_R\\
*\left(a_4\right)\in\left[a_2\right]_R\\
\oplus\left(a_1\right),\oplus\left(a_3\right)\in\left[a_1\right]_R\\
\oplus\left(a_2\right),\oplus\left(a_5\right)\in\left[a_2\right]_R\\
\oplus\left(a_4\right)\in\left[a_1\right]_R\\
∗(a1),∗(a3)∈[a4]R∗(a2),∗(a5)∈[a1]R∗(a4)∈[a2]R⊕(a1),⊕(a3)∈[a1]R⊕(a2),⊕(a5)∈[a2]R⊕(a4)∈[a1]R
因此RRR是AAA上的同余关系
商代数A/RA/RA/R的运算表
∗′*^{\prime}∗′ | ⊕′\oplus^{\prime}⊕′ | |
---|---|---|
[a1]R\left[a_1\right]_R[a1]R | [a4]R\left[a_4\right]_R[a4]R | [a1]R\left[a_1\right]_R[a1]R |
[a2]R\left[a_2\right]_R[a2]R | [a1]R\left[a_1\right]_R[a1]R | [a2]R\left[a_2\right]_R[a2]R |
[a4]R\left[a_4\right]_R[a4]R | [a2]R\left[a_2\right]_R[a2]R | [a1]R\left[a_1\right]_R[a1]R |
g:A→A/Rg:A\to A/Rg:A→A/R
g(a)=[a]R
g\left(a\right)=\left[a\right]_R
g(a)=[a]R
参考:
离散数学(刘玉珍)