圆锥曲线练习

在这里插入图片描述

A(x1,y1),B(x2,y2)A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right)A(x1,y1),B(x2,y2)
l:y=k(x+2)l: y = k\left( x+2 \right)l:y=k(x+2)
显然y=0y=0y=0符合题意
k≠0k\neq 0k=0
联立lllCCC
(k2+12)x2+4k2x+4k2−1=0 \left(k^2 + \frac{1}{2}\right)x^2 + 4k^2x + 4k^2 - 1=0 (k2+21)x2+4k2x+4k21=0
Δ>0⇒−22<k<22 \Delta > 0 \Rightarrow - \frac{\sqrt{ 2 }}{2} < k < \frac{\sqrt{ 2 }}{2} Δ>022<k<22
由韦达定理
x1+x2=−4k212+k2 x_{1}+x_{2} =- \frac{4k^2}{\frac{1}{2} + k^2} x1+x2=21+k24k2
AAABBB的中点为D(x1+x22,y1+y22)D \left( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \right)D(2x1+x2,2y1+y2)
GDGDGDlll垂直得
y1+y22+12x1+x22−0⋅k=−1kx1+x22+2k+12x1+x22−0⋅k=−1k2+4k2x1+x2+kx1+x2=−1k2−12−k2−12+k24k=−1k=1±22 \begin{aligned} \frac{\frac{y_{1}+y_{2}}{2} + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\ \frac{k\frac{x_{1}+x_{2}}{2} + 2k + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\ k^2 + \frac{4 k^2}{x_{1} + x_{2}} + \frac{k}{x_{1}+x_{2}} &=-1 \\ k^2 - \frac{1}{2} - k^2 - \frac{\frac{1}{2} + k^2}{4k} &=-1 \\ k &= 1 \pm \frac{\sqrt{ 2 }}{2} \end{aligned} 2x1+x202y1+y2+21k2x1+x20k2x1+x2+2k+21kk2+x1+x24k2+x1+x2kk221k24k21+k2k=1=1=1=1=1±22

因此l:y=0l: y=0l:y=0y=(1−22)(x+2)y=\left(1-\frac{\sqrt{ 2 }}{2}\right)\left( x+2 \right)y=(122)(x+2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值