设A(x1,y1),B(x2,y2)A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right)A(x1,y1),B(x2,y2)
l:y=k(x+2)l: y = k\left( x+2 \right)l:y=k(x+2)
显然y=0y=0y=0符合题意
当k≠0k\neq 0k=0
联立lll和CCC
(k2+12)x2+4k2x+4k2−1=0
\left(k^2 + \frac{1}{2}\right)x^2 + 4k^2x + 4k^2 - 1=0
(k2+21)x2+4k2x+4k2−1=0
Δ>0⇒−22<k<22
\Delta > 0 \Rightarrow - \frac{\sqrt{ 2 }}{2} < k < \frac{\sqrt{ 2 }}{2}
Δ>0⇒−22<k<22
由韦达定理
x1+x2=−4k212+k2
x_{1}+x_{2} =- \frac{4k^2}{\frac{1}{2} + k^2}
x1+x2=−21+k24k2
AAA和BBB的中点为D(x1+x22,y1+y22)D \left( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \right)D(2x1+x2,2y1+y2)
由GDGDGD和lll垂直得
y1+y22+12x1+x22−0⋅k=−1kx1+x22+2k+12x1+x22−0⋅k=−1k2+4k2x1+x2+kx1+x2=−1k2−12−k2−12+k24k=−1k=1±22
\begin{aligned}
\frac{\frac{y_{1}+y_{2}}{2} + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\
\frac{k\frac{x_{1}+x_{2}}{2} + 2k + \frac{1}{2}}{\frac{x_{1}+x_{2}}{2}-0} \cdot k &= -1\\
k^2 + \frac{4 k^2}{x_{1} + x_{2}} + \frac{k}{x_{1}+x_{2}} &=-1 \\
k^2 - \frac{1}{2} - k^2 - \frac{\frac{1}{2} + k^2}{4k} &=-1 \\
k &= 1 \pm \frac{\sqrt{ 2 }}{2}
\end{aligned}
2x1+x2−02y1+y2+21⋅k2x1+x2−0k2x1+x2+2k+21⋅kk2+x1+x24k2+x1+x2kk2−21−k2−4k21+k2k=−1=−1=−1=−1=1±22
因此l:y=0l: y=0l:y=0或y=(1−22)(x+2)y=\left(1-\frac{\sqrt{ 2 }}{2}\right)\left( x+2 \right)y=(1−22)(x+2)