TensorRT -- github

该存储库包含TensorRT的开源组件,包括插件、解析器(Caffe和ONNX)的源代码及示例应用。这些是TensorRTGA版本的子集,提供扩展和修复。用户可以找到贡献和编码指南,以及变更日志。若需企业支持,可考虑NVIDIAAIEnterprise套件,而预构建的TensorRTPython包简化了安装过程。此外,文章提到了使用Docker构建TensorRT-OSS容器的方法,以及针对Jetson平台的JetPackSDK下载和构建环境设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


此存储库包含 NVIDIA TensorRT 的开源软件 (OSS) 组件。它包括 TensorRT 插件和解析器(Caffe 和 ONNX)的源代码,以及演示 TensorRT 平台用法和功能的示例应用程序。这些开源软件组件是 TensorRT 通用版 (GA) 版本的子集,具有一些扩展和错误修复。

有关对 TensorRT-OSS 的代码贡献,请参阅我们的贡献指南和编码指南。
有关 TensorRT-OSS 版本附带的新增功能和更新的摘要,请参阅变更日志。
如需业务咨询,请联系 researchinquiries@nvidia.com
有关媒体和其他查询,请通过 hmarinez@nvidia.com 联系 Hector Marinez
需要企业支持? NVIDIA AI Enterprise 软件套件为 TensorRT 提供 NVIDIA 全球支持。查看 NVIDIA LaunchPad,免费访问一组使用托管在 NVIDIA 基础设施上的 TensorRT 的动手实验室。

加入 TensorRT 和 Triton 社区,随时了解最新的产品更新、错误修复、内容、最佳实践等。

预构建的 TensorRT Python 包
我们提供了 TensorRT Python 包以便于安装。
安装:

下载 TensorRT OSS
git clone -b main https://github.com/nvidia/TensorRT TensorRT
cd张量RT
git 子模块更新 --init --recursive
(可选 - 如果不使用 TensorRT 容器)指定 TensorRT GA 发布构建路径
如果使用 TensorRT OSS 构建容器,TensorRT 库预安装在 /usr/lib/x86_64-linux-gnu 下,您可以跳过此步骤。

否则从 NVIDIA 开发者专区下载并提取 TensorRT GA 版本。

示例:带有 cuda-12.0 的 x86-64 上的 Ubuntu 20.04

cd ~/下载
tar -xvzf TensorRT-8.6.1.6.Linux.x86_64-gnu.cuda-12.0.tar.gz
export TRT_LIBPATH=`pwd`/TensorRT-8.6.1.6
(可选 - 仅适用于 Jetson 构建)下载 JetPack SDK
下载并启动 JetPack SDK 管理器。使用您的 NVIDIA 开发者帐户登录。
选择平台和目标操作系统(例如:Jetson AGX Xavier、Linux Jetpack 5.0),然后单击继续。
在下载和安装选项下更改下载文件夹并选择立即下载,稍后安装。同意许可条款并单击继续。
将提取的文件移动到 TensorRT-OSS /docker/jetpack_files 文件夹中。
设置构建环境
对于 Linux 平台,我们建议您生成一个用于构建 TensorRT OSS 的 docker 容器,如下所述。对于本机构建,请安装必备系统包。

生成 TensorRT-OSS 构建容器。
可以使用提供的 Dockerfile 和构建脚本生成 TensorRT-OSS 构建容器。构建容器配置为开箱即用地构建 TensorRT OSS。

### TensorRT-LLM 安装 TensorRT-LLM 是由 NVIDIA 推出的一个开源库,旨在简化大型语言模型(LLM)在生产环境中高效推理的过程。为了方便用户安装和配置此工具包,官方提供了详细的文档和支持材料。 #### 安装步骤 对于希望使用 TensorRT-LLM 的开发者来说,可以从 GitHub 资源库获取最新的版本并按照提供的说明进行本地构建或通过 Docker 镜像来加速设置过程[^3]: ```bash git clone --recurse-submodules https://github.com/NVIDIA/TensorRT-LLM.git cd TensorRT-LLM pip install -r requirements.txt ``` 如果选择基于容器的方式,则可以利用预建好的Docker镜像加快开发环境搭建速度: ```dockerfile FROM nvcr.io/nvidia/pytorch:21.09-py3 RUN pip install git+https://github.com/NVIDIA/TensorRT-LLM.git@main#egg=tensorrt_llm[all] ``` ### 使用教程 一旦成功安装了 TensorRT-LLM 库之后,就可以开始探索其丰富的特性集以及如何将其应用于实际场景之中。官方文档不仅涵盖了基本概念介绍还包含了多个实用案例研究,帮助新手快速上手[^1]。 例如,在定义 LLM 和创建 TensorRT 引擎方面,可以通过简单的几行 Python 代码实现复杂的功能: ```python from tensorrt_llm.models import GPTJForCausalLM, BloomForCausalLM model = GPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B') engine = model.to_tensorrt_engine() ``` 此外,还有专门针对特定应用场景如聊天机器人(ChatGLM3)部署的支持指南可供参考[^2]。 ### 性能优化 当涉及到性能调优时,TensorRT-LLM 利用了多种先进技术确保最佳表现效果。这其中包括但不限于量化技术、稀疏化处理以及其他硬件专用优化措施等[^4]。 具体而言,可以在初始化阶段指定一些参数来自定义生成引擎的行为模式从而达到更好的效率指标;也可以尝试调整批大小(batch size),序列长度(sequence length)等因素影响最终结果的质量与响应时间之间的平衡关系。 ```python config = { 'fp16': True, 'int8': False, 'use_cache': True, } engine = model.to_tensorrt_engine(config=config) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值