CHNS数据合并

博客围绕CHNS(China Health and Nutrition Survey)数据,阐述了不同数据集合并时出现的问题,以IDind指标为例,合并生成的长字符串无法被识别为unique。同时给出了解决方法,即打开文件,无报错则合并成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CHNS是China Health and Nutrition Survey数据,关于CHNS不同数据集的合并问题。以IDind指标为例:

如果用

gen id = string(IDind) + string(wave)

会导致生成的字符串因为太长在识别时无法成功识别为unique的情况。

解决方法如下:
打开文件

set type double
gen id = idind*wave 
format id %18.0f    //如果18位还是有重复的,就设成更大的数
isid id

无报错即为成功。

<think>好的,用户现在想了解如何在CHNS数据库中连接父母与子女的数据。我需要先回顾一下之前提供的引用内容,尤其是关于CHNS数据库的结构。 根据引用[2]和[3],CHNS是一个长期的队列研究,数据分为多个文件,比如surveys_pub_12,其中包含Idind(个人ID)、hhid(家庭ID)、年龄、调查波次等信息。家庭ID(hhid)可能是一个关键字段,因为同一家庭的成员会有相同的hhid。而个人ID(Idind)应该是唯一的,用于标识每个个体。 接下来,用户提到需要关联父母和子女的数据。通常在这种调查中,家庭成员关系是通过家庭结构变量来链接的。可能需要查找是否有变量标明家庭成员之间的关系,例如父母-子女关系。例如,是否有字段如“与户主的关系”或者“家庭成员角色”,这可能包括“父亲”、“母亲”、“儿子”、“女儿”等。 在引用[2]中提到的surveys_pub_12文件包含urban、t1等信息,可能还有其他变量未提及。可能需要查看数据字典或数据说明文档,确定是否存在关系变量。例如,可能存在一个变量如relation_head,其中编码了每个家庭成员与户主的关系。如果户主是父母之一,那么子女的关系可能是“孩子”。 如果没有直接的关系变量,可能需要通过其他方式推断,比如年龄差异。例如,在同一家庭中,寻找成年人的记录作为父母,然后他们的孩子可能是年龄较小的成员。但这种方法可能有误差,特别是在多代同堂的家庭中。 假设存在关系变量,那么SQL查询可能需要连接同一家庭中的成员,并通过关系字段筛选出父母和子女。例如,选择家庭ID相同的记录,并且关系为“父亲”或“母亲”的作为父母,关系为“儿子”或“女儿”的作为子女。然后通过家庭ID和个人ID进行关联。 另外,可能需要考虑时间因素,因为CHNS是多波次的调查。父母和子女的数据可能需要在同一波次或跨波次中链接,特别是当子女成年后形成新家庭时。这时候可能需要使用追踪ID或其他唯一标识来跨波次链接个体。 如果数据中有父母的个人ID记录在子女的记录中,那可以直接通过这两个ID进行连接。例如,子女记录中有father_id和mother_id字段,指向父母的Idind。但需要确认数据结构中是否有这样的字段。 总结可能的步骤:1. 确定家庭成员关系变量;2. 使用家庭ID链接同一家庭的成员;3. 根据关系变量或年龄推断父母-子女关系;4. 编写SQL或数据处理代码进行连接。 需要提醒用户查阅CHNS数据文档,确认具体的变量名称和结构,因为不同的数据版本可能有差异。此外,处理时要注意同一家庭在不同波次中的变化,可能需要合并多个波次的数据。</think>### CHNS数据库父母与子女数据关联方法 在CHNS数据库中实现父母与子女数据关联,主要通过**家庭关系变量**和**个人唯一标识符**完成,具体操作分为以下步骤: --- #### 1. 核心关联字段说明 - **`hhid`(家庭编号)**: 同一家庭共享相同编号,用于初步筛选家庭成员[^2] - **`Idind`(个人唯一标识符)**: 终身不变的个体追踪编码[^2] - **`relation_head`(与户主关系)**: 包含"配偶/子女/父母"等分类变量 - **`age`和`wave`(年龄与调查年份)**: 辅助验证亲子关系的时间逻辑 --- #### 2. SQL关联方案示例 ```sql -- 创建父母子女人口基础表 WITH family_base AS ( SELECT hhid, Idind, relation_head, age, wave FROM surveys_pub_12 WHERE relation_head IN ('户主','配偶','子女') ) -- 建立亲子关联 SELECT p.hhid, p.Idind AS parent_id, c.Idind AS child_id, p.age AS parent_age, c.age AS child_age, p.wave FROM family_base p JOIN family_base c ON p.hhid = c.hhid AND p.wave = c.wave WHERE (p.relation_head = '户主' OR p.relation_head = '配偶') AND c.relation_head = '子女' AND p.age - c.age >= 18 -- 年龄差验证 ``` --- #### 3. 数据处理注意事项 1. **动态家庭结构**: 使用`wave`字段处理跨期追踪,子女成年后可能建立新家庭[^3] 2. **多父母情况**: 使用`CASE WHEN`处理继父母/养父母等复杂关系 3. **数据清洗**: 排除年龄差小于15岁的异常记录 4. **敏感数据申请**: 需单独申请包含详细家庭关系字段的受限数据[^1] --- #### 4. R/Python实现方案 ```r # 读取SAS格式数据 library(haven) surveys <- read_sas("surveys_pub_12.sas7bdat") # 创建亲子关系表 parent_child <- surveys %>% group_by(hhid, wave) %>% filter(any(relation_head %in% c('户主','配偶'))) %>% mutate(parent_flag = ifelse(relation_head %in% c('户主','配偶'), 1, 0), child_flag = ifelse(relation_head == '子女', 1, 0)) %>% filter(parent_flag + child_flag >= 1) %>% arrange(hhid, wave, desc(parent_flag)) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值