human-to-robot handover记录

NVIDIA研究了一种基于点云的人类抓握分类方法,用于机器人从人类手中接收物体的场景。该方法通过PointNet++对人手抓握物体的姿势进行分类,并规划相应的抓取路径。测试结果显示,此方法在抓取方块类物体时成功率高,但对复杂形状物体的抓取效果不佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Human Grasp Classification for Reactive Human-to-Robot Handovers
NVIDIA在2020年发布在arxiv(2003.06000)上的论文。
将人抓取物体的手的姿势分成七类,通过PointNet++来预测人手姿势的类别,每一种类别对应一种抓取姿态。通过点云识别到人手姿态的类别后,通过一个 操作-状态 对应表,进行抓取规划。为了训练手势分类网络,拍摄了151551张点云图像。
整个流程概括如下:检测手姿态->规划抓取路径->机械臂驱动末端执行器运动到待抓取位姿->抓取->放置到桌子上。
在这里插入图片描述
测试结果如下图:planning success rate表示上面流程中的“机械臂驱动末端执行器运动到待抓取位姿”;Grasp Success Rate表示“抓取”;Action 运行时间表示从“规划抓取路径”到放到桌子上;Total运行时间除了包括Action的时间还包括重新规划时间(人手可能运动);Trial时间表示整个流程的时间。
在这里插入图片描述
缺点:
只测试了机器人从人手中抓取方块,形状复杂的物体没有实验。当物体形状改变时,流程中“规划抓取路径”几乎不起作用。机器人从手中抓取真的需要检测人手的姿态吗?
在这里插入图片描述

2、未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值