机器学习笔记:反向传播

本文详细探讨了反向传播在神经网络中的应用,包括如何利用链式法则计算梯度,共享路径的概念,以及forward pass和backward pass的过程。重点讲解了前馈网络的反向传播思想,并结合实例说明了参数更新的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 共享路径

对于每一个可学习的参数w,我们都需要通过梯度下降更新它的值。而我们可以使用反向传播的思路来求解损失函数在某一个参数上的loss

 

如上图所示,W_L,W_{L-1}可以用如下方式运算 

可以发现 ,上图红色圈起来的部分是共享的

2 使用反向传播的条件

1,链式法则成立(任何时候都成立)

2,计算图无环

2.1 链式法则

3 forward pass VS backward pass

根据链式法则,C对w的偏导数可以分为前向pass和后向pass

 3.1 forward pass

结果就是相应的input x的值

 

3.2 backward pass

backpass 又可以分成两项:

前一项就是我们相对应的激活函数的微分

 如果a被作为input,输入到了w3和w4两个neuron中,那么根据链式法则,有上面一行

 

综合一下有: 

 

 4 反向的前馈神经网络思考反向传播

 对于这个,我们可以想成反向的前馈神经网络:

 ​​​​

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值